Skip to main content

Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy

  • Protocol
  • First Online:
Lipid Rafts

Abstract

The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.

We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marquês JT, Antunes CAC, Santos FC, de Almeida RFM (2015) Chapter three—biomembrane organization and function: the decisive role of ordered lipid domains. In: CVK AI, Michael R (eds) Advances in planar lipid bilayers and liposomes, vol 22. Academic Press, Cambridge, pp 65–96

    Google Scholar 

  2. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 8(6):361–374

    Article  Google Scholar 

  3. Marsh D (2009) Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. Biochim Biophys Acta 1788(10):2114–2123

    Article  CAS  PubMed  Google Scholar 

  4. de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85(4):2406–2416

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Almeida RF, Loura LM, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346(4):1109–1120

    Article  PubMed  Google Scholar 

  6. Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92(2):502–516

    Article  CAS  PubMed  Google Scholar 

  7. Bastos AE, Scolari S, Stockl M, Almeida RF (2012) Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo. Methods Enzymol 504:57–81

    Article  CAS  PubMed  Google Scholar 

  8. Castro BM, De Almeida RFM, Silva LC, Fedorov A, Prieto M (2007) Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys J 93(5):1639–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aresta-Branco F, Cordeiro AM, Marinho HS, Cyrne L, Antunes F, de Almeida RF (2011) Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts. J Biol Chem 286(7):5043–5054

    Article  CAS  PubMed  Google Scholar 

  10. Bagulho A, Vilas-Boas F, Pena A, Peneda C, Santos FC, Jeronimo A, de Almeida RF, Real C (2015) The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells. Redox Biol 6:454–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amaro M, Reina F, Hof M, Eggeling C, Sezgin E (2017) Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. J Phys D Appl Phys 50(13):134004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bastos AEP, Marinho HS, Cordeiro AM, de Soure AM, de Almeida RFM (2012) Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study: characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane probes. Chem Phys Lipids 165(5):577–588

    Article  CAS  PubMed  Google Scholar 

  13. Kwiatek JM, Owen DM, Abu-Siniyeh A, Yan P, Loew LM, Gaus K (2013) Characterization of a new series of fluorescent probes for imaging membrane order. PLoS One 8(2):e52960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sklar LA, Hudson BS, Petersen M, Diamond J (1977) Conjugated polyene fatty acids as fluorescent probes: spectroscopic characterization. Biochemistry 16(5):813–819

    Article  CAS  PubMed  Google Scholar 

  15. Paiva TO, Bastos AEP, Marques JT, Viana AS, Lima PA, de Almeida RFM (2016) m-cresol affects the lipid bilayer in membrane models and living neurons. RSC Adv 6(107):105699–105712

    Article  CAS  Google Scholar 

  16. Medhage B, Mukhtar E, Kalman B, Johansson LBÅ, Molotkovsky JG (1992) Electronic energy transfer in anisotropic systems. Part 5.—rhodamine–lipid derivatives in model membranes. J Chem Soc Faraday Trans 88(19):2845–2851

    Article  CAS  Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  18. Martin ML, Barcelo-Coblijn G, de Almeida RF, Noguera-Salva MA, Teres S, Higuera M, Liebisch G, Schmitz G, Busquets X, Escriba PV (2013) The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. Biochim Biophys Acta 1828(5):1405–1413

    Article  CAS  PubMed  Google Scholar 

  19. Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH Jr, Prieto M, Futerman AH (2012) Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 53(3):430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinto SN, Laviad EL, Stiban J, Kelly SL, Merrill AH Jr, Prieto M, Futerman AH, Silva LC (2014) Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. J Lipid Res 55(1):53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varela AR, Ventura AE, Carreira AC, Fedorov A, Futerman AH, Prieto M, Silva LC (2017) Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Phys Chem Chem Phys 19(1):340–346

    Article  CAS  Google Scholar 

  22. Santos FC, Fernandes AS, Antunes CAC, Moreira FP, Videira A, Marinho HS, de Almeida RFM (2017) Reorganization of plasma membrane lipid domains during conidial germination. Biochim Biophys Acta Mol Cell Biol Lipids 1862(2):156–166

    Article  CAS  PubMed  Google Scholar 

  23. Athanasopoulos A, Andre B, Sophianopoulou V, Gournas C (2019) Fungal plasma membrane domains. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuz022

  24. Malinsky J, Opekarova M, Grossmann G, Tanner W (2013) Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu Rev Plant Biol 64:501–529

    Article  CAS  PubMed  Google Scholar 

  25. Andre B, Boeke J, Bussey H, Davis R, Foury F, Friend S, Hegemann J, Johnston M, Kelly S, Philippsen P, Revuelta J, Scherens B, Messenguy F, Strathern J, et al Saccharomyces Genome Deletion Project. http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html. Accessed 1 10 2019

  26. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths AJF, McCluskey K Neurospora Functional Genomics Project Strains. http://www.fgsc.net/ncrassa.html. Accessed 1 10 2019

  28. Malinsky J, Opekarova M (2016) New insight into the roles of membrane microdomains in physiological activities of fungal cells. Int Rev Cell Mol Biol 325:119–180

    Article  CAS  PubMed  Google Scholar 

  29. Bieberich E (2018) Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem Phys Lipids 216:114–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    Article  PubMed  PubMed Central  Google Scholar 

  31. Filipe HAL, Sousa C, Marquês JT, Vila-Viçosa D, de Granada-Flor A, Viana AS, Santos MSCS, Machuqueiro M, de Almeida RFM (2018) Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radic Biol Med 115:232–245

    Article  CAS  PubMed  Google Scholar 

  32. McClare CW (1971) An accurate and convenient organic phosphorus assay. Anal Biochem 39(2):527–530

    Article  CAS  PubMed  Google Scholar 

  33. Branco MR, Marinho HS, Cyrne L, Antunes F (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J Biol Chem 279(8): 6501–6506

    Google Scholar 

  34. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence. In: Principles and applications, 2nd edn. Wiley-VCH, Verlag & co. KGaA, Weinheim, Germany

    Google Scholar 

  35. O'Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, Cambridge

    Google Scholar 

  36. Loura LM, Prieto M (2007) Fluorescence resonance energy transfer to characterize cholesterol-induced domains. Methods Mol Biol 400:489–501

    Article  CAS  PubMed  Google Scholar 

  37. de Almeida RF, Loura LM, Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157(2):61–77

    Article  PubMed  Google Scholar 

  38. Davis RH, de Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. In: Methods Enzymol, vol 17. Academic Press, Cambridge, pp 79–143

    Google Scholar 

  39. Werner-Washburne M, Braun EL, Crawford ME, Peck VM (1996) Stationary phase in Saccharomyces cerevisiae. Mol Microbiol 19(6):1159–1166

    Article  CAS  PubMed  Google Scholar 

  40. Vecer J, Vesela P, Malinsky J, Herman P (2014) Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast. FEBS Lett 588(3):443–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia, F.C.T., I.P., Portugal, for PTDC/BBB-BQB/6071/2014, PTDC/BBB-BQB/3710/2014, PTDC/BIA-BFS/29448/2017, UID/Multi/00612/2019 (Centro de Química e Bioquímica), UIDB/00100/2020 (Centro de Química Estrutural), and Investigador FCT to L.C. Silva (IF/00437/2014), F.C.S. PhD fellowship, SFRH/BD/108031/2015, A.B.O. PhD fellowship, SFRH/BD/145600/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo F. M. de Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sousa, C., Santos, F.C., Bento-Oliveira, A., Mestre, B., Silva, L.C., de Almeida, R.F.M. (2021). Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. In: Bieberich, E. (eds) Lipid Rafts. Methods in Molecular Biology, vol 2187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0814-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0814-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0813-5

  • Online ISBN: 978-1-0716-0814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics