Skip to main content

Single-Cell Transcriptomic Analysis of Hematopoietic Cells

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

Abstract

Single-cell RNA sequencing (scRNA-Seq) allows the complete and unbiased analysis of the transcriptional state of an individual cell. In the past 5 years, scRNA-Seq contributed to the progress of the hematology field, advancing our knowledge of both normal and malignant hematopoiesis. Different scRNA-Seq methods are available, all relying on the conversion of RNA to cDNA, followed by amplification of cDNA in order to obtain a sufficient amount of genetic material for sequencing. Currently available scRNA-Seq platforms can be broadly divided into two categories: droplet-based and plate-based. Each of these approaches has advantages and disadvantages that need to be considered when designing the experiment. Here, we describe detailed protocols of two of the most used methods for scRNA-Seq of hematopoietic cells: Smart-Seq2 (plate-based) and 10× Genomics (droplet-based).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A, David E, Cohen N, Lauridsen FK, Haas S, Schlitzer A, Mildner A, Ginhoux F, Jung S, Trumpp A, Porse BT, Tanay A, Amit I (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–1677

    Article  CAS  PubMed  Google Scholar 

  3. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Göttgens B (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroeder T (2010) Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6:203–207

    Article  CAS  PubMed  Google Scholar 

  5. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB, McLeod J, Laurenti E, Dunant CF, JD MP, Stein LD, Dror Y, Dick JE (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116

    Article  PubMed  Google Scholar 

  6. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573

    Article  PubMed  PubMed Central  Google Scholar 

  8. Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, Sandberg R, Mjösberg J (2016) The heterogeneity of human CD127 innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 17:451–460

    Article  PubMed  Google Scholar 

  9. Hernández PP, Strzelecka PM, Athanasiadis EI, Hall D, Robalo AF, Collins CM, Boudinot P, Levraud J-P, Cvejic A (2018) Single-cell transcriptional analysis reveals ILC-like cells in zebrafish. Sci Immunol 3:eaau5265. https://doi.org/10.1126/sciimmunol.aau5265

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe’er D, Rahman A, Amit I, Merad M (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13:599–604

    Article  CAS  PubMed  Google Scholar 

  12. Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mincarelli L, Lister A, Lipscombe J, Macaulay IC (2018) Defining cell identity with single-cell omics. Proteomics 18:1700312

    Article  PubMed Central  Google Scholar 

  14. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181

    Article  CAS  PubMed  Google Scholar 

  15. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Picelli S (2019) Full-length single-cell RNA sequencing with smart-seq2. Methods Mol Biol 1979:25–44

    Article  CAS  PubMed  Google Scholar 

  17. ExternaRNAl RNARNA Controls Consortium (2005) Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics 6:150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cvejic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strzelecka, P.M., Ranzoni, A.M., Cvejic, A. (2021). Single-Cell Transcriptomic Analysis of Hematopoietic Cells. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics