Skip to main content

Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview

  • Protocol
  • First Online:
Cancer Cell Signaling

Abstract

The use of immunotherapy as an alternative treatment for cancer patients has become of great interest in the scientific community as it is required to overcome many of the currently unsolved problems such as tumor escape, immunosuppression and unwanted unspecific toxicity. The use of chimeric antigen receptor T cells has been a very successful strategy in some hematologic malignancies. However, the application of CAR T cells has been limited to solid tumors, and this has aimed the development of new generation of CARs with enhanced effectivity and specificity. Here, we review the state of the art of CAR T cell therapy with special emphasis on the current challenges and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu S, Zhu W, Thompson P, Hannun YA (2018) Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun 9(1):3490. https://doi.org/10.1038/s41467-018-05467-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbas Z, Rehman S (2018) An overview of cancer treatment modalities. IntechOpen, London. https://doi.org/10.5772/intechopen.76558

    Book  Google Scholar 

  3. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, Gonzalez-Fernandez A (2011) Assessment of the evolution of cancer treatment therapies. Cancer 3(3):3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  Google Scholar 

  4. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357. https://doi.org/10.1200/jco.2005.00.240

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8(10):577–585. https://doi.org/10.1038/nrclinonc.2011.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonini C, Mondino A (2015) Adoptive T-cell therapy for cancer: the era of engineered T cells. Eur J Immunol 45(9):2457–2469. https://doi.org/10.1002/eji.201545552

    Article  CAS  PubMed  Google Scholar 

  7. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seimetz D, Heller K, Richter J (2019) Approval of first CAR-Ts: have we solved all hurdles for ATMPs? Cell Med 11:2155179018822781. https://doi.org/10.1177/2155179018822781

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karlsson H, Svensson E, Gigg C, Jarvius M, Olsson-Stromberg U, Savoldo B, Dotti G, Loskog A (2015) Evaluation of intracellular signaling downstream chimeric antigen receptors. PLoS One 10(12):e0144787. https://doi.org/10.1371/journal.pone.0144787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hillerdal V, Essand M (2015) Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs 29(2):75–89. https://doi.org/10.1007/s40259-015-0122-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028. https://doi.org/10.1073/pnas.86.24.10024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426. https://doi.org/10.1126/science.3140379

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369. https://doi.org/10.1016/j.addr.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  14. Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, Grupp SA, Chan VW, Liu H, Liu C (2018) A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov 4(1):62. https://doi.org/10.1038/s41421-018-0066-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581. https://www.nature.com/articles/nm.3838#supplementary-information. https://doi.org/10.1038/nm.3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, Milone MC, Payne AS (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353(6295):179–184. https://doi.org/10.1126/science.aaf6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ward DE, Fay BL, Adejuwon A, Han H, Ma Z (2018) Chimeric antigen receptors based on low affinity mutants of FcepsilonRI re-direct T cell specificity to cells expressing membrane IgE. Front Immunol 9:2231. https://doi.org/10.3389/fimmu.2018.02231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scott GS, Fishman S, Khai Siew L, Margalit A, Chapman S, Chervonsky AV, Wen L, Gross G, Wong FS (2010) Immunotargeting of insulin reactive CD8 T cells to prevent diabetes. J Autoimmun 35(4):390–397. https://doi.org/10.1016/j.jaut.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  19. Moisini I, Nguyen P, Fugger L, Geiger TL (2008) Redirecting therapeutic T cells against myelin-specific T lymphocytes using a humanized myelin basic protein-HLA-DR2-zeta chimeric receptor. J Immunol 180(5):3601–3611. https://doi.org/10.4049/jimmunol.180.5.3601

    Article  CAS  PubMed  Google Scholar 

  20. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, Riddell SR (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19(12):3153–3164. https://doi.org/10.1158/1078-0432.ccr-13-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hombach AA, Schildgen V, Heuser C, Finnern R, Gilham DE, Abken H (2007) T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J Immunol 178(7):4650–4657. https://doi.org/10.4049/jimmunol.178.7.4650

    Article  CAS  PubMed  Google Scholar 

  22. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, Jensen MC, Riddell SR (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3(2):125–135. https://doi.org/10.1158/2326-6066.cir-14-0127

    Article  CAS  PubMed  Google Scholar 

  23. Zhang T, Wu MR, Sentman CL (2012) An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol 189(5):2290–2299. https://doi.org/10.4049/jimmunol.1103495

    Article  CAS  PubMed  Google Scholar 

  24. Guedan S, Posey AD Jr, Shaw C, Wing A, Da T, Patel PR, McGettigan SE, Casado-Medrano V, Kawalekar OU, Uribe-Herranz M, Song D, Melenhorst JJ, Lacey SF, Scholler J, Keith B, Young RM, June CH (2018) Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3(1):e96976. https://doi.org/10.1172/jci.insight.96976

    Article  PubMed Central  Google Scholar 

  25. Zabel M, Tauber PA, Pickl WF (2019) The making and function of CAR cells. Immunol Lett 212:53–69. https://doi.org/10.1016/j.imlet.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ti D, Niu Y, Wu Z, Fu X, Han W (2018) Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Sci China Life Sci 61(11):1320–1332. https://doi.org/10.1007/s11427-018-9411-4

    Article  PubMed  Google Scholar 

  27. Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90(2):720–724. https://doi.org/10.1073/pnas.90.2.720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, Forman SJ (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16(9):1245–1256. https://doi.org/10.1016/j.bbmt.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stancovski I, Schindler DG, Waks T, Yarden Y, Sela M, Eshhar Z (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 151(11):6577–6582

    CAS  PubMed  Google Scholar 

  30. Weinkove R, George P, Dasyam N, McLellan AD (2019) Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol 8(5):e1049. https://doi.org/10.1002/cti2.1049

    Article  Google Scholar 

  31. Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, Butler MO, Minden MD, Hirano N (2018) A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 24(3):352–359. https://doi.org/10.1038/nm.4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gee AP (2015) Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther 22(2):67–71. https://doi.org/10.1038/cgt.2014.71

    Article  CAS  PubMed  Google Scholar 

  33. Golubovskaya V, Wu L (2016) Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancer 8(3):36. https://doi.org/10.3390/cancers8030036

    Article  CAS  Google Scholar 

  34. Levine BL, Miskin J, Wonnacott K, Keir C (2017) Global manufacturing of CAR T cell therapy. Mol Ther Meth Clin Dev 4:92–101. https://doi.org/10.1016/j.omtm.2016.12.006

    Article  CAS  Google Scholar 

  35. Wang X, Riviere I (2015) Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 22(2):85–94. https://doi.org/10.1038/cgt.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh H, Moyes JS, Huls MH, Cooper LJ (2015) Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther 22(2):95–100. https://doi.org/10.1038/cgt.2014.69

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Liu J, Zhong JF, Zhang X (2017) Engineering CAR-T cells. Biomarker Res 5:22. https://doi.org/10.1186/s40364-017-0102-y

    Article  Google Scholar 

  38. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120. https://doi.org/10.1158/2326-6066.cir-13-0170

    Article  CAS  PubMed  Google Scholar 

  39. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J Transl Med 10:69. https://doi.org/10.1186/1479-5876-10-69

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smolej L (2016) Refractory chronic lymphocytic leukemia: a therapeutic challenge. Curr Cancer Drug Targets 16(8):701–709

    Article  CAS  PubMed  Google Scholar 

  41. Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7(6):e577. https://doi.org/10.1038/bcj.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frey NV (2019) Chimeric antigen receptor T cells for acute lymphoblastic leukemia. Am J Hematol 94(S1):S24–s27. https://doi.org/10.1002/ajh.25442

    Article  CAS  PubMed  Google Scholar 

  43. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V, Lindgren C, Oron AP, Li D, Riddell SR, Park JR, Jensen MC (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25):3322–3331. https://doi.org/10.1182/blood-2017-02-769208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459. https://doi.org/10.1056/NEJMoa1709919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR, Maloney DG (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126(6):2123–2138. https://doi.org/10.1172/jci85309

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM, Vakil A, Steinmetz RN, Schoch G, Chapuis AG, Till BG, Kiem H-P, Ramos JD, Shadman M, Cassaday RD, Acharya UH, Riddell SR, Maloney DG, Turtle CJ (2019) Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood 133(15):1652–1663. https://doi.org/10.1182/blood-2018-11-883710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW, Mackall CL (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24(1):20–28. https://doi.org/10.1038/nm.4441

    Article  CAS  PubMed  Google Scholar 

  50. Lemal R, Tournilhac O (2019) State-of-the-art for CAR T-cell therapy for chronic lymphocytic leukemia in 2019. J Immunother Cancer 7(1):202. https://doi.org/10.1186/s40425-019-0686-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, Lacey SF, Melenhorst JJ, McGettigan SE, Cook DR, Zhang C, Xu J, Do P, Hulitt J, Kudchodkar SB, Cogdill AP, Gill S, Porter DL, Woyach JA, Long M, Johnson AJ, Maddocks K, Muthusamy N, Levine BL, June CH, Byrd JC, Maus MV (2016) Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127(9):1117–1127. https://doi.org/10.1182/blood-2015-11-679134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gauthier J, Hirayama AV, Hay KA, Li D, Lymp J, Sheih A, Purushe J, Pender BS, Hawkins RM, Vakil A, Phi T-D, Steinmetz RN, Chapuis AG, Till BG, Dhawale T, Hendrie PC, Kiem H-P, Ramos J, Shadman M, Cassaday RD, Acharya UH, Riddell SR, Maloney DG, Turtle CJ (2018) Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with Ibrutinib for relapsed and/or refractory CLL. Blood 132(Suppl 1):299–299. https://doi.org/10.1182/blood-2018-99-111061

    Article  Google Scholar 

  53. Gill SI, Vides V, Frey NV, Metzger S, O’Brien M, Hexner E, Mato AR, Lacey SF, Melenhorst JJ, Pequignot E, Gladney WL, Hwang W-T, Lamontagne A, Davis M, Byrd JC, Schuster SJ, Siegel DL, Isaacs RE, June CH, Porter DL (2018) Prospective clinical trial of anti-CD19 CAR T cells in combination with Ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood 132(Suppl 1):298–298. https://doi.org/10.1182/blood-2018-99-115418

    Article  Google Scholar 

  54. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528. https://doi.org/10.1016/s0140-6736(14)61403-3

    Article  CAS  PubMed  Google Scholar 

  55. Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D, Nussboim V, Meir A, Kubi A, Levy M, Zikich D, Zeltzer LA, Brezinger K, Schachter J, Nagler A, Besser MJ, Toren A (2018) Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol 93(12):1485–1492. https://doi.org/10.1002/ajh.25274

    Article  CAS  PubMed  Google Scholar 

  56. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73–95ra73. https://doi.org/10.1126/scitranslmed.3002842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720. https://doi.org/10.1182/blood-2011-10-384388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA, Rosenberg SA (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549. https://doi.org/10.1200/jco.2014.56.2025

    Article  CAS  PubMed  Google Scholar 

  59. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, Ambrose D, Grupp SA, Chew A, Zheng Z, Milone MC, Levine BL, Melenhorst JJ, June CH (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139. https://doi.org/10.1126/scitranslmed.aac5415

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brudno JN, Somerville RPT, Shi V, Rose JJ, Halverson DC, Fowler DH, Gea-Banacloche JC, Pavletic SZ, Hickstein DD, Lu TL, Feldman SA, Iwamoto AT, Kurlander R, Maric I, Goy A, Hansen BG, Wilder JS, Blacklock-Schuver B, Hakim FT, Rosenberg SA, Gress RE, Kochenderfer JN (2016) Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 34(10):1112–1121. https://doi.org/10.1200/jco.2015.64.5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, Wood B, Lozanski A, Byrd JC, Heimfeld S, Riddell SR, Maloney DG (2017) Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J Clin Oncol 35(26):3010–3020. https://doi.org/10.1200/jco.2017.72.8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Geyer MB, Riviere I, Senechal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Halton E, Lamanna N, Rademaker J, Sadelain M, Brentjens RJ, Park JH (2018) Autologous CD19-targeted CAR T cells in patients with residual CLL following initial purine analog-based therapy. Mol Ther 26(8):1896–1905. https://doi.org/10.1016/j.ymthe.2018.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Siddiqi T, Soumerai JD, Wierda WG, Dubovsky JA, Gillenwater HH, Gong L, Mitchell A, Thorpe J, Yang L, Dorritie KA (2018) Rapid MRD-negative responses in patients with relapsed/refractory CLL treated with Liso-Cel, a CD19-directed CAR T-cell product: preliminary results from transcend CLL 004, a phase 1/2 study including patients with high-risk disease previously treated with Ibrutinib. Blood 132(Suppl 1):300–300. https://doi.org/10.1182/blood-2018-99-110462

    Article  Google Scholar 

  64. Hansrivijit P, Gale RP, Barrett J, Ciurea SO (2019) Cellular therapy for acute myeloid leukemia—current status and future prospects. Blood Rev 37:100578. https://doi.org/10.1016/j.blre.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  65. Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, Li Y, Schrank-Hacker A, Morrissette JJD, Carroll M, June CH, Grupp SA, Gill S (2017) Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 129(17):2395–2407. https://doi.org/10.1182/blood-2016-08-736041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, Hoffman L, Aguilar B, Chang WC, Bretzlaff W, Chang B, Jonnalagadda M, Starr R, Ostberg JR, Jensen MC, Bhatia R, Forman SJ (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122(18):3138–3148. https://doi.org/10.1182/blood-2012-12-474056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Hear C, Heiber JF, Schubert I, Fey G, Geiger TL (2015) Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica 100(3):336–344. https://doi.org/10.3324/haematol.2014.112748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, Lamb LS, Bhatia R, Mineishi S, Di Stasi A (2016) In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PLoS One 11(12):e0166891. https://doi.org/10.1371/journal.pone.0166891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Honemann D, Gambell P, Westerman DA, Haurat J, Westwood JA, Scott AM, Kravets L, Dickinson M, Trapani JA, Smyth MJ, Darcy PK, Kershaw MH, Prince HM (2013) Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21(11):2122–2129. https://doi.org/10.1038/mt.2013.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang M, Bennani NN, Feldman AL (2017) Lymphoma classification update: T-cell lymphomas, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms. Expert Rev Hematol 10(3):239–249. https://doi.org/10.1080/17474086.2017.1281122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson JK, Mehta A (2019) A review of chimeric antigen receptor T-cells in lymphoma. Expert Rev Hematol 12(7):551–561. https://doi.org/10.1080/17474086.2019.1629901

    Article  CAS  PubMed  Google Scholar 

  72. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, Link BK, Hay A, Cerhan JR, Zhu L, Boussetta S, Feng L, Maurer MJ, Navale L, Wiezorek J, Go WY, Gisselbrecht C (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130(16):1800–1808. https://doi.org/10.1182/blood-2017-03-769620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheah CY, Seymour JF (2017) When to treat patients with relapsed follicular lymphoma. Expert Rev Hematol 10(3):187–191. https://doi.org/10.1080/17474086.2017.1291339

    Article  CAS  PubMed  Google Scholar 

  74. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J, Go WY (2017) Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544. https://doi.org/10.1056/NEJMoa1707447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, Li X, Zhang YJ, Zhang WY, Chen MX, Zhang Y, Feng KC, Liu Y, Li SX, Yang QM, Han WD (2017) Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 23(5):1156–1166. https://doi.org/10.1158/1078-0432.ccr-16-1365

    Article  CAS  PubMed  Google Scholar 

  76. Ramos CA, Torrano V, Bilgi M, Gerken C, Dakhova O, Mei Z, Wu M, Grilley B, Gee AP, Rooney CM, Dotti G, Savoldo B, Heslop HE, Brenner MK (2019) CD30-chimeric antigen receptor (CAR) T cells for therapy of Hodgkin lymphoma (HL). Hematol Oncol 37(S2):168–168. https://doi.org/10.1002/hon.125_2629

    Article  Google Scholar 

  77. Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A, Rossi J, Xue A, Goff SL, Yang JC, Sherry RM, Klebanoff CA, Kammula US, Sherman M, Perez A, Yuan CM, Feldman T, Friedberg JW, Roschewski MJ, Feldman SA, McIntyre L, Toomey MA, Rosenberg SA (2017) Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 35(16):1803–1813. https://doi.org/10.1200/jco.2016.71.3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, Fleury I, Bachanova V, Foley SR, Ho PJ, Mielke S, Magenau JM, Holte H, Pantano S, Pacaud LB, Awasthi R, Chu J, Anak Ö, Salles G, Maziarz RT (2018) Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380(1):45–56. https://doi.org/10.1056/NEJMoa1804980

    Article  PubMed  Google Scholar 

  79. Khan JF, Khan AS, Brentjens RJ (2019) Application of CAR T cells for the treatment of solid tumors. Prog Mol Biol Transl Sci 164:293–327. https://doi.org/10.1016/bs.pmbts.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  80. Metzinger MN, Verghese C, Hamouda DM, Lenhard A, Choucair K, Senzer N, Brunicardi FC, Dworkin L, Nemunaitis J (2019) Chimeric antigen receptor T-cell therapy: reach to solid tumor experience. Oncology 97(2):59–74. https://doi.org/10.1159/000500488

    Article  CAS  PubMed  Google Scholar 

  81. Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, Luo Y, Zhang Q, Liu L, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang X, Bie P, Liang H, Pecher G, Qian C (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther 25(5):1248–1258. https://doi.org/10.1016/j.ymthe.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv HY, Huang JH, Yang QM, Han WD (2017) Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 10(1):4. https://doi.org/10.1186/s13045-016-0378-7

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, Byatte AJ, Kirillova N, Valle JW, Sharma SK, Chester KA, Westwood NB, Halford SER, Nabarro S, Wan S, Austin E, Hawkins RE (2017) The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 66(11):1425–1436. https://doi.org/10.1007/s00262-017-2034-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP (2015) Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 21(14):3149–3159. https://doi.org/10.1158/1078-0432.ccr-14-1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, Zhai Y, Bading JR, Ressler JA, Portnow J, D’Apuzzo M, Forman SJ, Jensen MC (2015) Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21(18):4062–4072. https://doi.org/10.1158/1078-0432.ccr-15-0428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D’Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ, Badie B (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375(26):2561–2569. https://doi.org/10.1056/NEJMoa1610497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, Ghazi A, Gerken C, Yi Z, Ashoori A, Wu MF, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang YJ, New P, Grilley B, Stojakovic M, Hicks J, Powell SZ, Brenner MK, Heslop HE, Grossman R, Wels WS, Gottschalk S (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3(8):1094–1101. https://doi.org/10.1001/jamaoncol.2017.0184

    Article  PubMed  PubMed Central  Google Scholar 

  88. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Plesa G, Lacey SF, Navenot J-M, Zheng Z, Levine BL, Okada H, June CH, Brogdon JL, Maus MV (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9(399):eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, Liu H, Wu M-F, Gee AP, Mei Z, Rooney CM, Heslop HE, Brenner MK (2011) Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056. https://doi.org/10.1182/blood-2011-05-354449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg JR, Jensen MC (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833. https://doi.org/10.1038/sj.mt.6300104

    Article  CAS  PubMed  Google Scholar 

  91. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20):6106–6115. https://doi.org/10.1158/1078-0432.ccr-06-1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, Abedi M, Davies RA, Cabral HJ, Al-Homsi AS, Cohen SI (2016) Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76(14):1257–1270. https://doi.org/10.1002/pros.23214

    Article  CAS  PubMed  Google Scholar 

  93. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P, Gottschalk S (2015) Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33(15):1688–1696. https://doi.org/10.1200/jco.2014.58.0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Massa C, Seliger B (2019) The tumor microenvironment: thousand obstacles for effector T cells. Cell Immunol 343:103730. https://doi.org/10.1016/j.cellimm.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  95. Newick K, O’Brien S, Moon E, Albelda SM (2017) CAR T cell therapy for solid tumors. Annu Rev Med 68:139–152. https://doi.org/10.1146/annurev-med-062315-120245

    Article  CAS  PubMed  Google Scholar 

  96. Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J, Powell DJ Jr, Riley JL, June CH, Albelda SM (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730. https://doi.org/10.1158/1078-0432.CCR-11-0351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  98. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461. https://doi.org/10.1016/j.ccell.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646. https://doi.org/10.1158/1078-0432.CCR-13-0458

    Article  CAS  PubMed  Google Scholar 

  100. Sun S, Hao H, Yang G, Zhang Y, Fu Y (2018) Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J Immunol Res 2018:2386187. https://doi.org/10.1155/2018/2386187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Howard SC, Jones DP, Pui CH (2011) The tumor lysis syndrome. N Engl J Med 364(19):1844–1854. https://doi.org/10.1056/NEJMra0904569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hombach A, Hombach AA, Abken H (2010) Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther 17(10):1206–1213. https://doi.org/10.1038/gt.2010.91

    Article  CAS  PubMed  Google Scholar 

  103. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C, Bordignon C (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319):1719–1724. https://doi.org/10.1126/science.276.5319.1719

    Article  CAS  PubMed  Google Scholar 

  104. Casucci M, Falcone L, Camisa B, Norelli M, Porcellini S, Stornaiuolo A, Ciceri F, Traversari C, Bordignon C, Bonini C, Bondanza A (2018) Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells co-expressing a suicide gene. Front Immunol 9:507. https://doi.org/10.3389/fimmu.2018.00507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C (2010) Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther 21(3):241–250. https://doi.org/10.1089/hum.2010.014

    Article  CAS  PubMed  Google Scholar 

  106. Gargett T, Brown MP (2014) The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 5:235. https://doi.org/10.3389/fphar.2014.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, Brouns SA, Spencer DM, Till BG, Jensen MC, Riddell SR, Press OW (2013) Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS One 8(12):e82742. https://doi.org/10.1371/journal.pone.0082742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, Faure C, Caillot D, Moldovan M, Valmary-Degano S, Biichle S, Daguindau E, Garnache-Ottou F, Tabruyn S, Adotevi O, Deschamps M, Ferrand C (2019) CML hematopoietic stem cells expressing IL1RAP can be targeted by chimeric antigen receptor-engineered T cells. Cancer Res 79(3):663–675. https://doi.org/10.1158/0008-5472.can-18-1078

    Article  CAS  PubMed  Google Scholar 

  109. Yu S, Yi M, Qin S, Wu K (2019) Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 18(1):125. https://doi.org/10.1186/s12943-019-1057-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou X, Di Stasi A, Tey SK, Krance RA, Martinez C, Leung KS, Durett AG, Wu MF, Liu H, Leen AM, Savoldo B, Lin YF, Grilley BJ, Gee AP, Spencer DM, Rooney CM, Heslop HE, Brenner MK, Dotti G (2014) Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood 123(25):3895–3905. https://doi.org/10.1182/blood-2014-01-551671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paszkiewicz PJ, Frassle SP, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, Sadelain M, Liu L, Jensen MC, Riddell SR, Busch DH (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126(11):4262–4272. https://doi.org/10.1172/JCI84813

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, Burbridge SE, Box C, Eccles SA, Maher J (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070. https://doi.org/10.1007/s10875-012-9689-9

    Article  CAS  PubMed  Google Scholar 

  113. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schonfeld K, Koch J, Dotti G, Heslop HE, Gottschalk S, Wels WS, Baker ML, Ahmed N (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105. https://doi.org/10.1038/mtna.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164(4):780–791. https://doi.org/10.1016/j.cell.2016.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5(215):215ra172. https://doi.org/10.1126/scitranslmed.3006597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R, Li Z, Davila E (2012) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res 18(23):6436–6445. https://doi.org/10.1158/1078-0432.CCR-12-1449

    Article  CAS  PubMed  Google Scholar 

  117. Juillerat A, Marechal A, Filhol JM, Valton J, Duclert A, Poirot L, Duchateau P (2016) Design of chimeric antigen receptors with integrated controllable transient functions. Sci Rep 6:18950. https://doi.org/10.1038/srep18950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’Connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24(5):563–571. https://doi.org/10.1038/s41591-018-0010-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558(7709):307–312. https://doi.org/10.1038/s41586-018-0178-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, Martinez NM, Harrington CT, Chung EY, Perazzelli J, Hofmann TJ, Maude SL, Raman P, Barrera A, Gill S, Lacey SF, Melenhorst JJ, Allman D, Jacoby E, Fry T, Mackall C, Barash Y, Lynch KW, Maris JM, Grupp SA, Thomas-Tikhonenko A (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5(12):1282–1295. https://doi.org/10.1158/2159-8290.CD-15-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soldevila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cortés-Hernández, A., Alvarez-Salazar, E.K., Soldevila, G. (2021). Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics