Skip to main content

Virus-Based microRNA Silencing in Plants

  • Protocol
  • First Online:
Virus-Induced Gene Silencing in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2172))

Abstract

Virus-based microRNA silencing (VbMS) is an efficient, powerful, and high-throughput approach to screen and investigate the function of microRNAs (miRNAs) in plants. The VbMS system was originally developed in Nicotiana benthamiana and tomato (Solanum lycopersicum) and has been extended to various other plant species such as Arabidopsis, cotton, and wheat with different virus vectors. VbMS is generally designed to use virus vectors to direct the expression of miRNA target mimic (TM) molecules which can complementarily pair to target miRNAs and block their function. Here, we describe the TRV- and PVX-based VbMS approaches to silence endogenous miRNAs in N. benthamiana and tomato plants by Agrobacterium infiltration. This method can be further applied to other plant species using suitable virus vectors in combination with diverse TM strategies, which will facilitate functional studies of miRNAs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25(1):21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16(5):258–264

    Article  CAS  PubMed  Google Scholar 

  4. Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62(1):185–206

    Article  CAS  PubMed  Google Scholar 

  5. Sunkar R, Chinnusamy V, Zhu J et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309

    Article  CAS  PubMed  Google Scholar 

  6. Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33(4):481–489

    Article  CAS  PubMed  Google Scholar 

  7. Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  8. Damodharan S, Corem S, Gupta SK et al (2018) Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J 96(4):855–868

    Article  CAS  PubMed  Google Scholar 

  9. Nizampatnam NR, Schreier SJ, Damodaran S et al (2015) microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84(1):140–153

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Cui W, Wu X et al (2018) Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. Mol Plant Pathol 19(11):2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Canto-Pastor A, Santos BAMC, Valli AA et al (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 116(7):2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Reichel M, Li Y et al (2014) The functional scope of plant microRNA-mediated silencing. Trends Plant Sci 19(12):750–756

    Article  CAS  PubMed  Google Scholar 

  13. Yan J, Gu Y, Jia X et al (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24(2):415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang Y, Wang F, Zhao J et al (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153(2):632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8(3):359–377

    Article  CAS  PubMed  Google Scholar 

  17. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18):3539–3547

    Article  CAS  PubMed  Google Scholar 

  18. McConnell JR, Emery J, Eshed Y et al (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709

    Article  CAS  PubMed  Google Scholar 

  19. McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16(7):1730–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  PubMed  Google Scholar 

  21. Todesco M, Rubio-Somoza I, Paz-Ares J et al (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6(7):e1001031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sha A, Zhao J, Yin K et al (2014) Virus-based microRNA silencing in plants. Plant Physiol 164(1):36–47

    Article  CAS  PubMed  Google Scholar 

  23. Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  CAS  PubMed  Google Scholar 

  24. Reichel M, Li J, Millar AA (2011) Silencing the silencer: strategies to inhibit microRNA activity. Biotechnol Lett 33(7):1285–1292

    Article  CAS  PubMed  Google Scholar 

  25. Peng T, Qiao M, Liu H et al (2018) A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants. Mol Plant 11(11):1400–1417

    Article  CAS  PubMed  Google Scholar 

  26. Tang G, Yan J, Gu Y et al (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 58(2):118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Liu Q, Hu P et al (2016) An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana. Sci Rep 6:20573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong G, Millar AA (2019) The use of microRNA decoy technologies to inhibit miRNA function in Arabidopsis. In: de Folter S (ed) Plant microRNAs: methods and protocols. Springer New York, New York, pp 227–238

    Chapter  Google Scholar 

  29. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reichel M, Li Y, Li J et al (2015) Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J 13(7):915–926

    Article  CAS  PubMed  Google Scholar 

  31. Ivashuta S, Banks IR, Wiggins BE et al (2011) Regulation of gene expression in plants through miRNA inactivation. PLoS One 6(6):e21330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao J, Liu Y (2016) Virus-based microRNA silencing. Bio-protocol 6(2):e1714

    Article  Google Scholar 

  33. Yan F, Guo W, Wu G et al (2014) A virus-based miRNA suppression (VbMS) system for miRNA loss-of-function analysis in plants. Biotechnol J 9(5):702–708

    Article  CAS  PubMed  Google Scholar 

  34. Gu Z, Huang C, Li F et al (2014) A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J 12(5):638–649

    Article  CAS  PubMed  Google Scholar 

  35. Du Z, Chen A, Chen W et al (2014) Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus. Plant Physiol 164(3):1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao Q, Tu Y, Carr JP et al (2015) An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs. Sci Rep 5:13178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiao J, Wang Y, Selvaraj JN et al (2015) Barley Stripe Mosaic Virus (BSMV) induced microRNA silencing in common wheat (Triticum aestivum L.). PLoS One 10(5):e0126621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Teotia S, Zhang D, Tang G (2017) Knockdown of rice microRNA166 by Short Tandem Target Mimic (STTM). In: Kaufmann M, Klinger C, Savelsbergh A (eds) Functional genomics: methods and protocols. Springer New York, New York, pp 337–349

    Chapter  Google Scholar 

  39. Teotia S, Singh D, Tang X et al (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34(2):106–123

    Article  CAS  PubMed  Google Scholar 

  40. Dommes AB, Herbert DB, Kivivirta KI et al (2018) Virus-induced gene silencing: empowering genetics in non-model organisms. J Exp Bot 70(3):757–770

    Article  CAS  Google Scholar 

  41. Lacomme C, Chapman S (2008) Use of Potato Virus X (PVX)-based vectors for gene expression and Virus-Induced Gene Silencing (VIGS). Curr Protoc Microbiol 8(1):16I.11.11–16I.11.13

    Article  Google Scholar 

  42. Lim H-S, Vaira AM, Domier LL et al (2010) Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 402(1):149–163

    Article  CAS  PubMed  Google Scholar 

  43. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18(2):134–141

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Schiff M, Marathe R et al (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429

    Article  CAS  PubMed  Google Scholar 

  45. Wang D, Macfarlane SA, Maule AJ (1997) Viral determinants of pea early browning virus seed transmission in pea. Virology 234(1):112–117

    Article  CAS  PubMed  Google Scholar 

  46. Yin K, Tang Y, Zhao J (2015) Genome-wide characterization of miRNAs involved in N Gene-mediated Immunity in response to tobacco mosaic virus in Nicotiana benthamiana. Evol Bioinform Online 11(Suppl 1):1–11

    PubMed  PubMed Central  Google Scholar 

  47. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Varkonyi-Gasic E, Hellens RP (2011) Quantitative stem-loop RT-PCR for detection of microRNAs. In: Kodama H, Komamine A (eds) RNAi and plant gene function analysis: methods and protocols. Humana Press, Totowa, NJ, pp 145–157

    Chapter  Google Scholar 

  49. Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Varkonyi-Gasic E (2017) Stem-loop qRT-PCR for the detection of plant microRNAs. In: Kovalchuk I (ed) Plant epigenetics: methods and protocols. Springer US, Boston, MA, pp 163–175

    Chapter  Google Scholar 

  51. Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Czimmerer Z, Hulvely J, Simandi Z et al (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8(1):e55168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yule Liu from Tsinghua University for providing the pTRV1 and pTRV2e vectors. This work was supported by a start-up fund from the Texas A&M AgriLife Research and a Hatch Project from USDA National Institute of Food and Agriculture to JS (TEX0-1-9675), a fellowship from China Scholarship Council to GW (201708130105), a fellowship from China Scholarship Council to HJ (201707877008), and an Outstanding Youth Fund of Jiangsu Province (BK20160016) and a fund from the National Natural Science Foundation of China to TL (31671980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, J. et al. (2020). Virus-Based microRNA Silencing in Plants. In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics