Skip to main content

Isolation and Analysis of Mitochondrial Fission Enzyme DNM1 from Saccharomyces cerevisiae

  • Protocol
  • First Online:
Dynamin Superfamily GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2159))

Abstract

Mitochondrial fission, an essential process for mitochondrial and cellular homeostasis, is accomplished by evolutionarily conserved members of the dynamin superfamily of large GTPases. These enzymes couple the hydrolysis of guanosine triphosphate to the mechanical work of membrane remodeling that ultimately leads to membrane scission. The importance of mitochondrial dynamins is exemplified by mutations in the human family member that causes neonatal lethality. In this chapter, we describe the subcloning, purification, and preliminary characterization of the budding yeast mitochondrial dynamin, DNM1, from Saccharomyces cerevisiae, which is the first mitochondrial dynamin isolated from native sources. The yeast-purified enzyme exhibits assembly-stimulated hydrolysis of GTP similar to other fission dynamins, but differs from the enzyme isolated from non-native sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramachandran R, Schmid SL (2018) The dynamin superfamily. Curr Biol 28:R411–R416. https://doi.org/10.1016/j.cub.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  2. Faelber K, Gao S, Held M et al (2013) Oligomerization of dynamin superfamily proteins in health and disease. Prog Mol Biol Transl Sci 117:411–443. https://doi.org/10.1016/B978-0-12-386931-9.00015-5

    Article  CAS  PubMed  Google Scholar 

  3. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  Google Scholar 

  4. Ford M, Nunnari J, Jenni S (2012) An integrated structural analysis of dynamin assembly. Microsc Microanal 18:48–49. https://doi.org/10.1017/S1431927612002097

    Article  Google Scholar 

  5. Bui HT, Shaw JM (2013) Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol 23:R891–R899. https://doi.org/10.1016/j.cub.2013.08.040

    Article  CAS  PubMed  Google Scholar 

  6. Danino D, Hinshaw JE (2001) Dynamin family of mechanoenzymes. Curr Opin Cell Biol 13:454–460

    Article  CAS  Google Scholar 

  7. Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147(4):699–706

    Google Scholar 

  8. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143(2):351–358

    Google Scholar 

  9. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9(3):96–102

    Google Scholar 

  10. Lee MW, Lee EY, Lai GH et al (2017) Molecular motor Dnm1 synergistically induces membrane curvature to facilitate mitochondrial fission. ACS Cent Sci 3:1156–1167. https://doi.org/10.1021/acscentsci.7b00338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leonard M, Doo Song B, Ramachandran R, Schmid SL (2005) Robust colorimetric assays for Dynamin’s basal and stimulated GTPase activities. In: Methods in enzymology. Academic Press, New York, pp 490–503

    Google Scholar 

  12. Antonny B, Burd C, De Camilli P et al (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284. https://doi.org/10.15252/embj.201694613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mears JA, Lackner LL, Fang S et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26. https://doi.org/10.1038/nsmb.1949

    Article  CAS  PubMed  Google Scholar 

  14. Ingerman E, Perkins EM, Marino M et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  CAS  Google Scholar 

  15. Chappie JS, Mears JA, Fang S et al (2011) A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–222. https://doi.org/10.1016/j.cell.2011.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chappie JS, Acharya S, Leonard M et al (2010) G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465:435–440. https://doi.org/10.1038/nature09032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Otsuga D, Keegan BR, Brisch E et al (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143:333–349

    Article  CAS  Google Scholar 

  18. Reubold TF, Faelber K, Plattner N et al (2015) Crystal structure of the dynamin tetramer. Nature 525:404. https://doi.org/10.1038/nature14880

    Article  CAS  PubMed  Google Scholar 

  19. Wenger J, Klinglmayr E, Frohlich C et al (2013) Functional mapping of human dynamin-1-like GTPase domain based on x-ray structure analyses. PLoS One 8:e71835. https://doi.org/10.1371/journal.pone.0071835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Francy CA, Frölich C, Daumke O, Mears JA (2014) Examining Drp1 conformational changes and domain interactions in the mitochondrial fission complex using Cryo-Em. Biophys J 106:601a. https://doi.org/10.1016/j.bpj.2013.11.3328

    Article  Google Scholar 

  21. Francy CA, Clinton RW, Fröhlich C et al (2017) Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci Rep 7:10744. https://doi.org/10.1038/s41598-017-11008-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stepanyants N, Macdonald PJ, Francy CA et al (2015) Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26:3104–3116. https://doi.org/10.1091/mbc.E15-06-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Francy CA, Alvarez FJD, Zhou L et al (2015) The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 290:11692–11703. https://doi.org/10.1074/jbc.M114.610881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kenniston JA, Lemmon MA (2010) Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J 29:3054–3067. https://doi.org/10.1038/emboj.2010.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bitoun M, Bevilacqua JA, Eymard B et al (2009) A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 72:93–95. https://doi.org/10.1212/01.wnl.0000338624.25852.12

    Article  CAS  PubMed  Google Scholar 

  26. von Spiczak S, Helbig KL, Shinde DN et al (2017) DNM1 encephalopathy: a new disease of vesicle fission. Neurology 89:385–394. https://doi.org/10.1212/WNL.0000000000004152

    Article  CAS  Google Scholar 

  27. Waterham HR, Koster J, van Roermund CW et al (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  CAS  Google Scholar 

  28. Chang C-R, Manlandro CM, Arnoult D et al (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503. https://doi.org/10.1074/jbc.M110.142430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faelber K, Posor Y, Gao S et al (2011) Crystal structure of nucleotide-free dynamin. Nature 477:556–560. https://doi.org/10.1038/nature10369

    Article  CAS  PubMed  Google Scholar 

  30. Frohlich C, Grabiger S, Schwefel D et al (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32:1280–1292. https://doi.org/10.1038/emboj.2013.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faelber K, Held M, Gao S et al (2012) Structural insights into dynamin-mediated membrane fission. Structure 20:1621–1628. https://doi.org/10.1016/j.str.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722. https://doi.org/10.1002/yea.320090705

    Article  CAS  PubMed  Google Scholar 

  33. Kapust RB, Tözsér J, Fox JD et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000

    Article  CAS  Google Scholar 

  34. Wells RC, Picton LK, Williams SC et al (2007) Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J Biol Chem 282:33769–33775. https://doi.org/10.1074/jbc.M700807200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  CAS  Google Scholar 

  36. Koppenol-Raab M, Harwig MC, Posey AE (2016) A targeted mutation identified through pKa measurements indicates a post-recruitment role for Fis1 in yeast mitochondrial fission. J Biol Chem 291(39):20329–20344

    Article  CAS  Google Scholar 

  37. Ingerman E, Nunnari J (2005) A continuous, regenerative coupled GTPase assay for dynamin-related proteins. In: Methods in enzymology. Academic Press, New York, pp 611–619

    Google Scholar 

  38. Cahill TJ, Leo V, Kelly M et al (2016) Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. J Biol Chem 291:25762. https://doi.org/10.1074/jbc.A115.665695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583–21587. https://doi.org/10.1074/jbc.C700083200

    Article  CAS  PubMed  Google Scholar 

  40. Xie W, Adayev T, Zhu H et al (2012) Activity-dependent phosphorylation of dynamin 1 at serine 857. Biochemistry 51:6786–6796. https://doi.org/10.1021/bi2017798

    Article  CAS  PubMed  Google Scholar 

  41. Warnock DE, Hinshaw JE, Schmid SL (1996) Dynamin self-assembly stimulates its GTPase activity. J Biol Chem 271:22310–22314. https://doi.org/10.1074/jbc.271.37.22310

    Article  CAS  PubMed  Google Scholar 

  42. Koirala S, Guo Q, Kalia R et al (2013) Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc Natl Acad Sci U S A 110:E1342–E1351. https://doi.org/10.1073/pnas.1300855110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bordt EA, Clerc P, Roelofs BA et al (2017) The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 40:583–594.e6. https://doi.org/10.1016/j.devcel.2017.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jaiswal M, Dubey BN, Koessmeier KT et al (2012) Biochemical assays to characterize Rho GTPases. In: Rivero F (ed) Rho GTPases: methods and protocols. Springer, New York, pp 37–58

    Chapter  Google Scholar 

Download references

Acknowledgement

The reagents pEG(KT), SEY6210, and DDY1810 were kind gifts from B. Wendland. This work was supported by the National Institutes of Health grant R01GM067180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Blake Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kennedy, N.W., Picton, L.K., Hill, R.B. (2020). Isolation and Analysis of Mitochondrial Fission Enzyme DNM1 from Saccharomyces cerevisiae. In: Ramachandran, R. (eds) Dynamin Superfamily GTPases. Methods in Molecular Biology, vol 2159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0676-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0676-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0675-9

  • Online ISBN: 978-1-0716-0676-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics