Skip to main content

Computational Analysis of Hi-C Data

  • Protocol
  • First Online:
Capturing Chromosome Conformation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2157))

Abstract

The chromatin organization in the 3D nuclear space is essential for genome functionality. This spatial organization encompasses different topologies at diverse scale lengths with chromosomes occupying distinct volumes and individual chromosomes folding into compartments, inside which the chromatin fiber is packed in large domains (as the topologically associating domains, TADs) and forms short-range interactions (as enhancer-promoter loops). The widespread adoption of high-throughput techniques derived from chromosome conformation capture (3C) has been instrumental in investigating the nuclear organization of chromatin. In particular, Hi-C has the potential to achieve the most comprehensive characterization of chromatin 3D structures, as in principle it can detect any pair of restriction fragments connected as a result of ligation by proximity. However, the analysis of the enormous amount of genomic data produced by Hi-C techniques requires the application of complex, multistep computational procedures that may constitute a difficult task also for expert computational biologists. In this chapter, we describe the computational analysis of Hi-C data obtained from the lymphoblastoid cell line GM12878, detailing the processing of raw data, the generation and normalization of the Hi-C contact map, the detection of TADs and chromatin interactions, and their visualization and annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  2. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354. https://doi.org/10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  3. Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309. https://doi.org/10.1101/gr.5571506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Denker A, de Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30:1357–1382. https://doi.org/10.1101/gad.281964.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rao SSP, Huang S-C, Glenn St Hilaire B et al (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320.e24. https://doi.org/10.1016/j.cell.2017.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin F, Li Y, Dixon JR et al (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503:290–294. https://doi.org/10.1038/nature12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ay F, Noble WS (2015) Analysis methods for studying the 3D architecture of the genome. Genome Biol 16:183. https://doi.org/10.1186/s13059-015-0745-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmitt AD, Hu M, Ren B (2016) Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17:743–755. https://doi.org/10.1038/nrm.2016.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicoletti C, Forcato M, Bicciato S (2018) Computational methods for analyzing genome-wide chromosome conformation capture data. Curr Opin Biotechnol 54:98–105. https://doi.org/10.1016/j.copbio.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  13. Forcato M, Nicoletti C, Pal K et al (2017) Comparison of computational methods for Hi-C data analysis. Nat Methods 14:679–685. https://doi.org/10.1038/nmeth.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dali R, Blanchette M (2017) A critical assessment of topologically associating domain prediction tools. Nucleic Acids Res 45:2994–3005. https://doi.org/10.1093/nar/gkx145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miura H, Poonperm R, Takahashi S, Hiratani I (2018) Practical analysis of Hi-C data: generating A/B compartment profiles. Methods Mol Biol 1861:221–245. https://doi.org/10.1007/978-1-4939-8766-5_16

    Article  CAS  PubMed  Google Scholar 

  16. Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crane E, Bian Q, McCord RP et al (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–244. https://doi.org/10.1038/nature14450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ay F, Bailey TL, Noble WS (2014) Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 24:999–1011. https://doi.org/10.1101/gr.160374.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226. https://doi.org/10.1038/nature23884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marti-Renom MA, Almouzni G, Bickmore WA et al (2018) Challenges and guidelines toward 4D nucleome data and model standards. Nat Genet 50:1352–1358. https://doi.org/10.1038/s41588-018-0236-3

    Article  CAS  PubMed  Google Scholar 

  23. Durand NC, Robinson JT, Shamim MS et al (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3:99–101. https://doi.org/10.1016/J.CELS.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imakaev M, Fudenberg G, McCord RP et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003. https://doi.org/10.1038/nmeth.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Servant N, Lajoie BR, Nora EP et al (2012) HiTC: exploration of high-throughput “C” experiments. Bioinformatics 28:2843–2844. https://doi.org/10.1093/bioinformatics/bts521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kerpedjiev P, Abdennur N, Lekschas F, et al (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19:125. https://doi.org/10.1186/s13059-018-1486-1

  27. Knight PA, Ruiz D (2013) A fast algorithm for matrix balancing. IMA J Numer Anal 33:1029–1047. https://doi.org/10.1093/imanum/drs019

    Article  Google Scholar 

  28. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9:215–216. https://doi.org/10.1038/nmeth.1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ernst J, Kellis M (2017) Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 12:2478–2492. https://doi.org/10.1038/nprot.2017.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenwald WW, Li H, Smith EN et al (2017) Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data. BMC Bioinformatics 18:207. https://doi.org/10.1186/s12859-017-1621-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Bando Ricerca Finalizzata 2016 grant GR-2016-02362451 (to M.F.) and by AIRC Special Program Molecular Clinical Oncology “5 per mille” grant 10016 and CNR-MIUR Epigenetics Flagship project (to S.B.). We thank Martina Dori for collaboration on the analysis of example data and critical feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mattia Forcato or Silvio Bicciato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Forcato, M., Bicciato, S. (2021). Computational Analysis of Hi-C Data. In: Bodega, B., Lanzuolo, C. (eds) Capturing Chromosome Conformation. Methods in Molecular Biology, vol 2157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0664-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0664-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0663-6

  • Online ISBN: 978-1-0716-0664-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics