Skip to main content

4C-Seq: Interrogating Chromatin Looping with Circular Chromosome Conformation Capture

  • Protocol
  • First Online:
Capturing Chromosome Conformation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2157))

Abstract

Chromosome conformation capture and its variants have allowed chromatin topology to be interrogated at a superior resolution and throughput than by microscopic methods. Among the method derivatives, 4C-seq (circular chromosome conformation capture, coupled to high-throughput sequencing) is a versatile, cost-effective means of assessing all chromatin interactions with a specific genomic region of interest, making it particularly suitable for interrogating chromatin looping events. We present the principles and procedures for designing and implementing successful 4C-seq experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160:1049–1059

    Article  CAS  Google Scholar 

  2. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  Google Scholar 

  3. van de Werken HJG, Landan G, Holwerda SJB et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9:969–972

    Article  Google Scholar 

  4. Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309

    Article  CAS  Google Scholar 

  5. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  Google Scholar 

  6. Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46:205–212

    Article  CAS  Google Scholar 

  7. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  Google Scholar 

  8. Denker A, de Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30:1357–1382

    Article  CAS  Google Scholar 

  9. Ghavi-Helm Y, Klein FA, Pakozdi T et al (2014) Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512:96–100

    Article  CAS  Google Scholar 

  10. Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025

    Article  Google Scholar 

  11. de Wit E, Vos ESM, Holwerda SJB et al (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60:676–684

    Article  Google Scholar 

  12. Guo Y, Xu Q, Canzio D et al (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–910

    Article  CAS  Google Scholar 

  13. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  CAS  Google Scholar 

  14. Noordermeer D, Leleu M, Splinter E et al (2011) The dynamic architecture of Hox gene clusters. Science 334:222–225

    Article  CAS  Google Scholar 

  15. Narendra V, Rocha PP, An D et al (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:1017–1021

    Article  CAS  Google Scholar 

  16. Geeven G, Teunissen H, de Laat W et al (2018) peakC: a flexible, non-parametric peak calling package for 4C and capture-C data. Nucleic Acids Res 46:e91

    Google Scholar 

  17. Schwartzman O, Mukamel Z, Oded-Elkayam N et al (2016) UMI-4C for quantitative and targeted chromosomal contact profiling. Nat Methods 13:685–691

    Article  CAS  Google Scholar 

  18. Mombaerts P, Terhorst C, Jacks T et al (1995) Characterization of immature thymocyte lines derived from T-cell receptor or recombination activating gene 1 and p53 double mutant mice. Proc Natl Acad Sci U S A 92:7420–7424

    Article  CAS  Google Scholar 

  19. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  Google Scholar 

  20. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

  21. Thongjuea S, Stadhouders R, Grosveld FG et al (2013) r3Cseq: an R/bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res 41:e132

    Article  CAS  Google Scholar 

  22. Raviram R, Rocha PP, Müller CL et al (2016) 4C-ker: a method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments. PLoS Comput Biol 12:e1004780

    Article  Google Scholar 

  23. Klein FA, Pakozdi T, Anders S et al (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics 31:3085–3091

    Article  CAS  Google Scholar 

  24. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  Google Scholar 

  25. Nagano T, Várnai C, Schoenfelder S et al (2015) Comparison of hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16:175

    Article  Google Scholar 

  26. Klein-Hessling S, Rudolf R, Muhammad K et al (2016) A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nat Commun 7:11841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Sexton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karasu, N., Sexton, T. (2021). 4C-Seq: Interrogating Chromatin Looping with Circular Chromosome Conformation Capture. In: Bodega, B., Lanzuolo, C. (eds) Capturing Chromosome Conformation. Methods in Molecular Biology, vol 2157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0664-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0664-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0663-6

  • Online ISBN: 978-1-0716-0664-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics