Skip to main content

Generation of an Induced Pluripotent Stem Cell Line with the Constitutive EGFP Reporter

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2155))

Abstract

The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. Here, we describe a protocol that provides a straightforward method for introducing a stable, highly expressed fluorescent protein into iPSCs using the CRISPR/Cas9 system and a standardized donor vector. The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim C (2014) Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 49(1):7–14

    Article  CAS  Google Scholar 

  2. Kehler J, Greco M, Martino V, Pachiappan M, Yokoe H, Chen A, Yang M, Auerbach J, Jessee J, Gotte M, Milanesi L, Albertini A, Bellipanni G, Zucchi I, Reinbold RA, Giordano A (2017) RNA-generated and gene-edited induced pluripotent stem cells for disease modeling and therapy. J Cell Physiol 232(6):1262–1269

    Article  CAS  Google Scholar 

  3. Roberts B, Haupt A, Tucker A, Grancharova T, Arakaki J, Fuqua MA, Nelson A, Hookway C, Ludmann SA, Mueller IA, Yang R, Horwitz R, Rafelski SM, Gunawardane RN (2017) Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 28(21):2854–2874

    Article  CAS  Google Scholar 

  4. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257

    Article  CAS  Google Scholar 

  5. Ahn JH, Chu HS, Kim TW, Oh IS, Choi CY, Hahn GH, Park CG, Kim DM (2005) Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions. Biochem Biophys Res Commun 338(3):1346–1352

    Article  CAS  Google Scholar 

  6. Ratner HK, Sampson TR, Weiss DS (2016) Overview of CRISPR-Cas9 biology. Cold Spring Harb Protoc 2016(12). https://doi.org/10.1101/pdb.top088849

    Article  Google Scholar 

  7. Bak RO, Porteus MH (2017) CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20(3):750–756

    Article  CAS  Google Scholar 

  8. Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58

    Article  Google Scholar 

  9. Youn H, Chung JK (2015) Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther 15(9):1337–1348

    Article  Google Scholar 

  10. Vaidyanathan S, Azizian KT, Haque A, Henderson JM, Hendel A, Shore S, Antony JS, Hogrefe RI, Kormann MSD, Porteus MH, McCaffrey AP (2018) Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids 12:530–542

    Article  CAS  Google Scholar 

  11. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857

    Article  CAS  Google Scholar 

  12. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for funding support from the National Institutes of Health (P30 AR057212 and R21 AR074642). We also thank the Gates Frontiers Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna Bilousova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Butterfield, K.T., McGrath, P.S., Han, C.M., Kogut, I., Bilousova, G. (2020). Generation of an Induced Pluripotent Stem Cell Line with the Constitutive EGFP Reporter. In: Kioussi, C. (eds) Stem Cells and Tissue Repair . Methods in Molecular Biology, vol 2155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0655-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0655-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0654-4

  • Online ISBN: 978-1-0716-0655-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics