Skip to main content

Fluorescent Staining of Arbuscular Mycorrhizal Structures Using Wheat Germ Agglutinin (WGA) and Propidium Iodide

  • Protocol
  • First Online:
Arbuscular Mycorrhizal Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2146))

Abstract

The colonization of a host plant root by arbuscular mycorrhizal (AM) fungi is a progressive process, characterized by asynchronous hyphal growth in intercellular and intracellular spaces, leading to the coexistence of diverse intraradical structures, such as hyphae, coils, arbuscules, and vesicles. In addition, the relative abundance of intercellular and intracellular fungal structures is highly dependent on root anatomy and the combination of plant and fungal species. Lastly, more than one fungal species may colonize the same root, adding a further level of complexity. For all these reasons, detailed imaging of a large number of samples is often necessary to fully assess the developmental processes and functionality of AM symbiosis. To this aim, the use of rapid and efficient staining methods that can be used routinely is crucial.

We herein present a simple protocol to obtain high detail images of both overall intraradical fungal colonization pattern and fine morphology, in AM root sections of Lotus japonicus. The procedure is based on tissue clearing, fluorescent staining of fungal cell walls with fluorescein isothiocyanate-conjugated wheat germ agglutinin (FITC-WGA), and the combined counterstaining of plant cell walls with propidium iodide (PI). The resulting images can be acquired using traditional or confocal fluorescence microscopes and used for qualitative and quantitative analyses of fungal colonization, of particular interest for the comparison of mycorrhizal phenotypes between different experimental conditions or genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, London, New York, pp 1–605

    Google Scholar 

  2. Cavagnaro TR, Gao L-L, Smith AF, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  3. Vierheilig H, Schweigerb P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  4. Diagne N, Escoute J, Lartaud M et al (2011) Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots. Mycorrhiza 21:315–321

    Article  Google Scholar 

  5. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  6. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Estimation of VA mycorrhizal infection levels. Research for methods having a functional significance. In: Physiological and Genetical aspects of Mycorrhizae. Aspects physiologiques et genetiques des mycorhizes. Institut National de la Recherche Agronomique, Dijon

    Google Scholar 

  7. Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  8. Kumar T, Majumdar A, Das P et al (2008) Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves. Biotech Histochem 83:153–159

    Article  CAS  Google Scholar 

  9. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64(12):5004–5007

    Article  CAS  Google Scholar 

  10. Czymmek KJ, Whallon JH, Klomparens KL (1994) Confocal microscopy in mycological research. Exp Mycol 18:275–293

    Article  Google Scholar 

  11. Combes RD, Haveland-Smith RB (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutat Res 98:101–243

    Article  CAS  Google Scholar 

  12. Schaffer GF, Peterson RL (1993) Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4:29–35

    Article  Google Scholar 

  13. Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213

    Article  Google Scholar 

  14. Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  Google Scholar 

  15. Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127

    Article  CAS  Google Scholar 

  16. Horisberger M (1981) Colloidal gold. A cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. In: Johari O (ed) Scanning electron microscopy. SEM, Chicago, pp 9–31

    Google Scholar 

  17. Roth J (1983) Application of lectin-gold complexes for electron microscopic localization of glyco-conjugates on thin sections. J Histochem Cytochem 31:987

    Article  CAS  Google Scholar 

  18. Benhamou N, Quellete GB (1986) Ultra-structural localization of glyco-conjugates in the fungus Ascocalyx abietina, the scleroderris canker agent of conifers, using lectin-gold complexes. J Histochem Cytochem 34:855

    Article  CAS  Google Scholar 

  19. Russo G, Carotenuto G, Fiorilli V et al (2019) Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytol 221(2):1036–1048. https://doi.org/10.1111/nph.15398

    Article  CAS  PubMed  Google Scholar 

  20. Lum MR, Li Y, Larue TA, David-Schwartz R et al (2002) Investigation of four classes of nonnodulating white clover (Melilotus alba annua Desr.) mutants and their responses to arbuscular-mycorrhizal fungi. Integr Comp Biol 42:295–303

    Article  Google Scholar 

  21. Bonfante-Fasolo P, Perotto S (1986) Visualization of surface sugar residues in mycorrhizal ericoid fungi by fluorescein conjugated lectins. Symbiosis 1:269–288

    CAS  Google Scholar 

  22. Balestrini P, Romera C, Puigdomenech P, Bonfante P (1994) Location of a cell-wall hydroxyproline-rich glycoprotein, cellulose and β-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195:201–209

    Article  CAS  Google Scholar 

  23. Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94:157–165

    Article  CAS  Google Scholar 

  24. Schaarschmidt S, Gonzàlez MC, Roitsch T et al (2007) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840

    Article  CAS  Google Scholar 

  25. Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122

    Article  CAS  Google Scholar 

  26. Kojima T, Saito K, Oba H et al (2014) Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Plant Cell Physiol 55:928–941

    Article  CAS  Google Scholar 

  27. Kobae Y, Ohtomo R (2016) An improved method for bright-field imaging of arbuscular mycorrhizal fungi in plant roots. Soil Sci Plant Nutr 62:27–30

    Article  CAS  Google Scholar 

  28. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication no. 22. Commonwealth Bureau, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Genre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carotenuto, G., Genre, A. (2020). Fluorescent Staining of Arbuscular Mycorrhizal Structures Using Wheat Germ Agglutinin (WGA) and Propidium Iodide. In: Ferrol, N., Lanfranco, L. (eds) Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, vol 2146. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0603-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0603-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0602-5

  • Online ISBN: 978-1-0716-0603-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics