Skip to main content

Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Membrane interactions of proteins play a role in essential cellular processes in both physiological and disease states. The structural flexibility of intrinsically disordered proteins (IDPs) allows for interactions with multiple partners, including membranes. However, determining conformational states of IDPs when interacting with membranes can be challenging. Here we describe the use of nuclear magnetic resonance (NMR), including dark-state exchange saturation transfer (DEST), to probe IDP-membrane interactions in order to determine whether there is an interaction, which residues participate, and the extent/nature of the interaction between the protein and the membrane. Using α-synuclein and tau as typical examples, we provide protocols for how the membrane interactions of IDPs can be probed, including details of how the samples should be prepared and guidelines on how to interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duplâtre G, Ferreira Marques MF, Da Graça Miguel M (1996) Size of sodium dodecyl sulfate micelles in aqueous solutions as studied by positron annihilation lifetime spectroscopy. J Phys Chem 100:16608–16612

    Article  Google Scholar 

  2. Barré P, Eliezer D (2013) Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Protein Sci 22:1037–1048

    Article  Google Scholar 

  3. Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329(4):763–778

    Article  CAS  Google Scholar 

  4. Snead D, Eliezer D (2018) Spectroscopic characterization of structure–function relationships in the intrinsically disordered protein complexin. In: Methods in enzymology. Elsevier, Amsterdam

    Google Scholar 

  5. Fawzi NL, Ying J, Torchia DA et al (2012) Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy. Nat Protoc 7:1523–1533

    Article  CAS  Google Scholar 

  6. Georgieva ER, Ramlall TF, Borbat PP et al (2010) The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 285:28261–28274

    Article  CAS  Google Scholar 

  7. Georgieva ER, Ramlall TF, Borbat PP et al (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130:12856–12857

    Article  CAS  Google Scholar 

  8. Jao CC, Hegde BG, Chen J et al (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105:19666–19671

    Article  CAS  Google Scholar 

  9. Eliezer D (2012) Distance information for disordered proteins from NMR and ESR measurements using paramagnetic spin labels. Methods Mol Biol 895:127–138

    Article  CAS  Google Scholar 

  10. Georgieva ER, Xiao S, Borbat PP et al (2014) Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys J 107:1441–1452

    Article  CAS  Google Scholar 

  11. Brandt R, Léger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131(5):1327–1340

    Article  CAS  Google Scholar 

  12. Gauthier-Kemper A, Weissmann C, Golovyashkina N et al (2011) The frontotemporal dementia mutation R406W blocks tau’s interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 192(4):647–661

    Article  CAS  Google Scholar 

  13. Shea TB (1997) Phospholipids alter tau conformation, phosphorylation, proteolysis, and association with microtubules: implication for tau function under normal and degenerative conditions. J Neurosci Res 50:114–122

    Article  CAS  Google Scholar 

  14. Gray EG, Paula-Barbosa M, Roher A (1987) Alzheimer’s disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol 13:91–110

    Article  CAS  Google Scholar 

  15. Barré P, Eliezer D (2006) Folding of the repeat domain of tau upon binding to lipid surfaces. J Mol Biol 362:312–326

    Article  Google Scholar 

  16. Emanuele M, Chieregatti E (2015) Mechanisms of alpha-synuclein action on neurotransmission: cell-autonomous and non-cell autonomous role. Biomolecules 5(2):865–892

    Article  CAS  Google Scholar 

  17. Das T, Eliezer D (2019) Membrane interactions of intrinsically disordered proteins: the example of alpha-synuclein. Biochim Biophys Acta Proteins Proteom 1867:879–889

    Article  CAS  Google Scholar 

  18. Gonzalez-Horta A, Gonzalez Hernandez B, Chavez-Montes A (2013) Fluorescence as a tool to study lipid-protein interactions: the case of α-Synuclein. Open J Biophys 3:112–119

    Article  Google Scholar 

  19. Das T, Eliezer D (2019) Probing structural changes in alpha-synuclein by nuclear magnetic resonance spectroscopy. Methods Mol Biol 1948:157–181

    Article  CAS  Google Scholar 

  20. Fawzi NL, Ying J, Ghirlando R et al (2011) Atomic resolution dynamics on the surface of amyloid β protofibrils probed by solution NMR. Nature 480:268–272

    Article  CAS  Google Scholar 

  21. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  Google Scholar 

  22. Eliezer D, Barré P, Kobaslija M et al (2005) Residual structure in the repeat domain of tau: Echoes of microtubule binding and paired helical filament formation. Biochemistry 44(3):1026–1036

    Article  CAS  Google Scholar 

  23. Harbison NW, Bhattacharya S, Eliezer D (2012) Assigning backbone NMR resonances for full length tau isoforms: efficient compromise between manual assignments and reduced dimensionality. PLoS One 7:e34679

    Article  CAS  Google Scholar 

  24. Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Q Rev Biophys 48:35–116

    Article  CAS  Google Scholar 

  25. Maltsev AS, Chen J, Levine RL et al (2013) Site-specific interaction between α-synuclein and membranes probed by NMR-observed methionine oxidation rates. J Am Chem Soc 135:2943–2946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eliezer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, T., Acosta, D., Eliezer, D. (2020). Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics