Skip to main content

Light Input to the Mammalian Circadian Clock

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

Circadian rhythms are 24-h cycles in physiology and behavior that occur in virtually all organisms. These processes are not simply driven by changes in the external environment as they persist under constant conditions, providing evidence for an internal biological clock. In mammals, this clock is located in the hypothalamic suprachiasmatic nuclei (SCN) and is based upon an intracellular mechanism composed of a transcriptional–translational feedback loop composed of a number of core clock genes. However, a clock is of no use unless it can be set to the correct time. The primary time cue for the molecular clock in the SCN is light detected by the eye. The photoreceptors involved in this process include the rods and cones that mediate vision, as well as the recently identified melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). Light information is conveyed to the SCN via the retinohypothalamic tract, resulting in an intracellular signaling cascade which converges on cAMP-response elements in the promoters of several key clock genes. Over the last two decades a number of studies have investigated the transcriptional response of the SCN to light stimuli with the aim of further understanding these molecular signaling pathways. Here we provide an overview of these studies and provide protocols for studying the molecular responses to light in the SCN clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  2. Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. West AC, Bechtold DA (2015) The cost of circadian desynchrony: evidence, insights and open questions. Bioessays 37:777–788

    Article  PubMed  PubMed Central  Google Scholar 

  5. DeCoursey PJ, Krulas JR, Mele G, Holley DC (1997) Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav 62:1099–1108

    Article  CAS  PubMed  Google Scholar 

  6. Paranjpe DA, Sharma VK (2005) Evolution of temporal order in living organisms. J Circadian Rhythms 3:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythm 13:100–112

    Article  CAS  Google Scholar 

  8. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  CAS  PubMed  Google Scholar 

  9. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  CAS  PubMed  Google Scholar 

  11. Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S et al (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539

    Article  CAS  PubMed  Google Scholar 

  12. O'Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 217:67–103

    Article  CAS  Google Scholar 

  13. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  CAS  PubMed  Google Scholar 

  14. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  15. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15:991–1002

    Article  CAS  PubMed  Google Scholar 

  17. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  CAS  PubMed  Google Scholar 

  18. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moore RY (1995) Organization of the mammalian circadian system. Ciba Found Symp 183:88–99; discussion 100–106

    CAS  PubMed  Google Scholar 

  20. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    Article  CAS  PubMed  Google Scholar 

  21. Nelson RJ, Zucker I (1981) Photoperiodic control of reproduction in olfactory-bulbectomized rats. Neuroendocrinology 32:266–271

    Article  CAS  PubMed  Google Scholar 

  22. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  PubMed  Google Scholar 

  23. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507

    Article  CAS  PubMed  Google Scholar 

  24. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG (2016) Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye 30:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36

    Article  CAS  PubMed  Google Scholar 

  27. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    Article  CAS  PubMed  Google Scholar 

  28. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O'Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    Article  CAS  PubMed  Google Scholar 

  29. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, Figueiro MG, Gamlin PD, Lockley SW, O'Hagan JB et al (2014) Measuring and using light in the melanopsin age. Trends Neurosci 37:1–9

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770

    Article  PubMed  Google Scholar 

  33. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  34. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266:1713–1717

    Article  CAS  PubMed  Google Scholar 

  37. Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  CAS  PubMed  Google Scholar 

  38. Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN (2015) Photic regulation of clock systems. Methods Enzymol 552:125–143

    Article  CAS  PubMed  Google Scholar 

  39. Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12:553–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34:245–253

    Article  CAS  PubMed  Google Scholar 

  41. Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260:238–241

    Article  CAS  PubMed  Google Scholar 

  42. Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythm 18:235–249

    Article  Google Scholar 

  43. Jagannath A, Butler R, Godinho SI, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJ et al (2013) The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 154:1100–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakamoto K, Norona FE, Alzate-Correa D, Scarberry D, Hoyt KR, Obrietan K (2013) Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock. J Neurosci 33:9021–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nadon R, Shoemaker J (2002) Statistical issues with microarrays: processing and analysis. Trends Genet 18:265–271

    Article  CAS  PubMed  Google Scholar 

  46. Peirson SN, Butler JN, Duffield GE, Takher S, Sharma P, Foster RG (2006) Comparison of clock gene expression in SCN, retina, heart, and liver of mice. Biochem Biophys Res Commun 351:800–807

    Article  CAS  PubMed  Google Scholar 

  47. Pilorz V, Tam SK, Hughes S, Pothecary CA, Jagannath A, Hankins MW, Bannerman DM, Lightman SL, Vyazovskiy VV, Nolan PM et al (2016) Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLoS Biol 14:e1002482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Peirson SN, Butler JN (2007) RNA extraction from mammalian tissues. Methods Mol Biol 362:315–327

    Article  CAS  PubMed  Google Scholar 

  49. Peirson SN, Butler JN (2007) Quantitative polymerase chain reaction. Methods Mol Biol 362:349–362

    Article  CAS  PubMed  Google Scholar 

  50. Albrecht U, Foster RG (2002) Placing ocular mutants into a functional context: a chronobiological approach. Methods 28:465–477

    Article  CAS  PubMed  Google Scholar 

  51. Foster RG (2002) Keeping an eye on the time: the Cogan Lecture. Invest Ophthalmol Vis Sci 43:1286–1298

    PubMed  Google Scholar 

  52. Jud C, Schmutz I, Hampp G, Oster H, Albrecht U (2005) A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proc Online 7:101–116

    Article  Google Scholar 

  53. Peirson SN, Thompson S, Hankins MW, Foster RG (2005) Mammalian photoentrainment: results, methods, and approaches. Methods Enzymol 393:697–726

    Article  CAS  PubMed  Google Scholar 

  54. Meijer JH, Schaap J, Watanabe K, Albus H (1997) Multiunit activity recordings in the suprachiasmatic nuclei: in vivo versus in vitro models. Brain Res 753:322–327

    Article  CAS  PubMed  Google Scholar 

  55. Meijer JH, Watanabe K, Schaap J, Albus H, Detari L (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 18:9078–9087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kornhauser JM, Mayo KE, Takahashi JS (1996) Light, immediate-early genes, and circadian rhythms. Behav Genet 26:221–240

    Article  CAS  PubMed  Google Scholar 

  57. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  CAS  PubMed  Google Scholar 

  58. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    Article  CAS  PubMed  Google Scholar 

  59. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  CAS  PubMed  Google Scholar 

  60. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC et al (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053

    Article  CAS  PubMed  Google Scholar 

  61. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    Article  CAS  PubMed  Google Scholar 

  62. Lin JT, Kornhauser JM, Singh NP, Mayo KE, Takahashi JS (1997) Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Brain Res Mol Brain Res 46:303–310

    Article  PubMed  Google Scholar 

  63. Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ (1998) A screen for genes induced in the suprachiasmatic nucleus by light. Science 279:1544–1547

    Article  CAS  PubMed  Google Scholar 

  64. Araki R, Nakahara M, Fukumura R, Takahashi H, Mori K, Umeda N, Sujino M, Inouye ST, Abe M (2006) Identification of genes that express in response to light exposure and express rhythmically in a circadian manner in the mouse suprachiasmatic nucleus. Brain Res 1098:9–18

    Article  CAS  PubMed  Google Scholar 

  65. Porterfield VM, Piontkivska H, Mintz EM (2007) Identification of novel light-induced genes in the suprachiasmatic nucleus. BMC Neurosci 8:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Porterfield VM, Mintz EM (2009) Temporal patterns of light-induced immediate-early gene expression in the suprachiasmatic nucleus. Neurosci Lett 463:70–73

    Article  CAS  PubMed  Google Scholar 

  68. Zhu H, Vadigepalli R, Rafferty R, Gonye GE, Weaver DR, Schwaber JS (2012) Integrative gene regulatory network analysis reveals light-induced regional gene expression phase shift programs in the mouse suprachiasmatic nucleus. PLoS One 7:e37833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116

    Article  CAS  PubMed  Google Scholar 

  71. Jones JR, Tackenberg MC, McMahon DG (2015) Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci 18:373–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. VanDunk C, Hunter LA, Gray PA (2011) Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31:6457–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mori K, Miyazato M, Ida T, Murakami N, Serino R, Ueta Y, Kojima M, Kangawa K (2005) Identification of neuromedin S and its possible role in the mammalian circadian oscillator system. EMBO J 24:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410

    Article  CAS  PubMed  Google Scholar 

  75. Doi M, Ishida A, Miyake A, Sato M, Komatsu R, Yamazaki F, Kimura I, Tsuchiya S, Kori H, Seo K et al (2011) Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun 2:327

    Article  PubMed  CAS  Google Scholar 

  76. Hong HK, Chong JL, Song W, Song EJ, Jyawook AA, Schook AC, Ko CH, Takahashi JS (2007) Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. PLoS Genet 3:e33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Husse J, Zhou X, Shostak A, Oster H, Eichele G (2011) Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythms 26:379–389

    Article  CAS  PubMed  Google Scholar 

  78. Reed HE, Meyer-Spasche A, Cutler DJ, Coen CW, Piggins HD (2001) Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13:839–843

    Article  CAS  PubMed  Google Scholar 

  79. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC et al (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart N. Peirson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dannerfjord, A.A., Brown, L.A., Foster, R.G., Peirson, S.N. (2021). Light Input to the Mammalian Circadian Clock. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics