Skip to main content

Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy

  • Protocol
  • First Online:
Expression, Purification, and Structural Biology of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

The relationship of membrane protein function and the surrounding lipid bilayer goes far beyond simple hydrophobic interactions. At least from the 1980s, it is speculated that a certain fluid lipid state may be important not only for the lateral diffusion of membrane proteins (MPs) but also for modulating the catalytic activity of MPs (Lenaz. Bioscience Rep 7 (11):823-837, 1987). Indeed, acyl chain length, hydrophobic mismatch, and lipid headgroups are determinants for enzymatic and transport activities of MPs (Dumas et al. Biochemistry 39(16):4846-4854, 2000; Johannsson et al. Biochim Biophys Acta 641(2):416-421, 1981; Montecucco et al. FEBS Lett 144(1):145-148, 1982; Martens et al. Nat Struct Mol Biol 23(8):744-751, 2016). Moreover, it is speculated that changes in membrane lipid dynamics are important in the field of thermosensation (Vriens J, Nilius B, Voets T, Nat Rev Neurosci 15:573-589, 2014). Atomic insights into lipid-mediated modulation of membrane protein dynamics would therefore provide new insights with the potential to fundamentally extend our understanding on dynamic lipid–protein interdependencies.

This chapter describes the expression and purification of nanodiscs assembled from membrane scaffold protein (MSP) as well as the expression and purification of the outer membrane protein X (OmpX). Subsequently, the incorporation of OmpX into MSP-derived nanodiscs is explained in detail. The chapter concludes with the setup of nuclear magnetic resonance (NMR) relaxation experiments and the extraction of relaxation rates for OmpX and the surrounding lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenaz G (1987) Lipid fluidity and membrane-protein dynamics. Bioscience Rep 7(11):823–837 https://doi.org/10.1007/Bf01119473

  2. Dumas F, Tocanne JF, Leblanc G, Lebrun MC (2000) Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39(16):4846–4854

    Article  CAS  PubMed  Google Scholar 

  3. Johannsson A, Smith GA, Metcalfe JC (1981) The effect of bilayer thickness on the activity of (Na+ + K+)-ATPase. Biochim Biophys Acta 641(2):416–421

    Article  CAS  PubMed  Google Scholar 

  4. Montecucco C, Smith GA, Dabbeni-sala F, Johannsson A, Galante YM, Bisson R (1982) Bilayer thickness and enzymatic activity in the mitochondrial cytochrome c oxidase and ATPase complex. FEBS Lett 144(1):145–148

    Article  CAS  PubMed  Google Scholar 

  5. Martens C, Stein RA, Masureel M, Roth A, Mishra S, Dawaliby R, Konijnenberg A, Sobott F, Govaerts C, McHaourab HS (2016) Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol 23(8):744–751. https://doi.org/10.1038/nsmb.3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15(9):573–589. https://doi.org/10.1038/nrn3784

    Article  CAS  PubMed  Google Scholar 

  7. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. https://doi.org/10.1038/nrm2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alberts B (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  9. Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  10. Martin M, de Mendoza D (2013) Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem J 451(2):269–275. https://doi.org/10.1042/BJ20121825

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351. https://doi.org/10.1038/nature17964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baenziger JE, Darsaut TE, Morris ML (1999) Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Biochemistry 38(16):4905–4911. https://doi.org/10.1021/bi990181l

    Article  CAS  PubMed  Google Scholar 

  13. Gracheva EO, Cordero-Morales JF, Gonzalez-Carcacia JA, Ingolia NT, Manno C, Aranguren CI, Weissman JS, Julius D (2011) Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476(7358):88–91. https://doi.org/10.1038/nature10245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sanchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464(7291):1006–1011. https://doi.org/10.1038/nature08943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanders CR, Landis GC (1995) Reconstitution of Membrane-Proteins into Lipid-Rich Bilayered Mixed Micelles for Nmr-Studies. Biochemistry 34 (12):4030–4040. doi:Doi https://doi.org/10.1021/Bi00012a022

  16. Poget SF, Cahill SM, Girvin ME (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 129 (9):2432−+. doi:https://doi.org/10.1021/ja0679836

  17. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci USA 101(26):9618–9623. https://doi.org/10.1073/pnas.0402324101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caldwell TA, Baoukina S, Brock AT, Oliver RC, Root KT, Krueger JK, Glover KJ, Tieleman DP, Columbus L (2018) Low- q Bicelles are mixed micelles. J Phys Chem Lett 9(15):4469–4473. https://doi.org/10.1021/acs.jpclett.8b02079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung KY, Kim TH, Manglik A, Alvares R, Kobilka BK, Prosser RS (2012) Role of detergents in conformational exchange of a G protein-coupled receptor. J Biol Chem 287(43):36305–36311. https://doi.org/10.1074/jbc.M112.406371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zoonens M, Comer J, Masscheleyn S, Pebay-Peyroula E, Chipot C, Miroux B, Dehez F (2013) Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J Am Chem Soc 135(40):15174–15182. https://doi.org/10.1021/ja407424v

    Article  CAS  PubMed  Google Scholar 

  21. Ding Y, Fujimoto LM, Yao Y, Plano GV, Marassi FM (2015) Influence of the lipid membrane environment on structure and activity of the outer membrane protein ail from Yersinia pestis. BBA-Biomembranes 1848(2):712–720. https://doi.org/10.1016/j.bbamem.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Dehez F, Schanda P, King MS, Kunji ERS, Chipot C (2017) Mitochondrial ADP/ATP carrier in Dodecylphosphocholine binds Cardiolipins with non-native affinity. Biophys J 113(11):2311–2315. https://doi.org/10.1016/j.bpj.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kurauskas V, Hessel A, Ma P, Lunetti P, Weinhaupl K, Imbert L, Brutscher B, King MS, Sounier R, Dolce V, Kunji ERS, Capobianco L, Chipot C, Dehez F, Bersch B, Schanda P (2018) How detergent impacts membrane proteins: atomic-level views of mitochondrial carriers in Dodecylphosphocholine. J Phys Chem Lett 9(5):933–938. https://doi.org/10.1021/acs.jpclett.8b00269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162. https://doi.org/10.1038/nprot.2016.070

    Article  CAS  PubMed  Google Scholar 

  25. Scheidelaar S, Koorengevel MC, Pardo JD, Meeldijk JD, Breukink E, Killian JA (2015) Molecular model for the solubilization of membranes into nanodisks by styrene maleic acid copolymers. Biophys J 108(2):279–290. https://doi.org/10.1016/j.bpj.2014.11.3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Kruse AC, Manglik A, Cho KH, Nurva S, Gether U, Guan L, Loland CJ, Byrne B, Kobilka BK, Gellman SH (2012) A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chemistry 18(31):9485–9490. https://doi.org/10.1002/chem.201200069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breyton C, Pucci B, Popot JL (2010) Amphipols and fluorinated surfactants: two alternatives to detergents for studying membrane proteins in vitro. Methods Mol Biol 601:219–245. https://doi.org/10.1007/978-1-60761-344-2_14

    Article  CAS  PubMed  Google Scholar 

  28. Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123(1):37–44. https://doi.org/10.1006/jsbi.1998.4007

    Article  CAS  PubMed  Google Scholar 

  29. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856

    Article  CAS  Google Scholar 

  30. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer Nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925. https://doi.org/10.1021/ja310901f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nasr ML, Baptista D, Strauss M, Sun ZJ, Grigoriu S, Huser S, Pluckthun A, Hagn F, Walz T, Hogle JM, Wagner G (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14(1):49–52. https://doi.org/10.1038/nmeth.4079

    Article  CAS  PubMed  Google Scholar 

  32. Bibow S, Carneiro MG, Sabo TM, Schwiegk C, Becker S, Riek R, Lee D (2014) Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Sci 23(7):851–856. https://doi.org/10.1002/pro.2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated beta(2)-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53(49):13376–13379. https://doi.org/10.1002/anie.201406603

    Article  CAS  Google Scholar 

  34. Frey L, Lakomek NA, Riek R, Bibow S (2017) Micelles, Bicelles, and Nanodiscs: comparing the impact of membrane mimetics on membrane protein backbone dynamics. Angew Chem Int Ed 56(1):380–383. https://doi.org/10.1002/anie.201608246

    Article  CAS  Google Scholar 

  35. Mors K, Roos C, Scholz F, Wachtveitl J, Dotsch V, Bernhard F, Glaubitz C (2012) Modified lipid and protein dynamics in nanodiscs. Bba-Proteins Proteom 1828(4):1222–1229. https://doi.org/10.1016/j.bbamem.2012.12.011

    Article  CAS  Google Scholar 

  36. Martinez D, Decossas M, Kowal J, Frey L, Stahlberg H, Dufourc EJ, Riek R, Habenstein B, Bibow S, Loquet A (2017) Lipid internal dynamics probed in Nanodiscs. ChemPhysChem 18:2651. https://doi.org/10.1002/cphc.201700450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brainard JR, Knapp RD, Morrisett JD, Pownall HJ (1984) 13C NMR studies of the thermal properties of a model high density lipoprotein. Apolipoprotein A-I-dimyristoylphosphatidylcholine complex. J Biol Chem 259(16):10340–10347

    CAS  PubMed  Google Scholar 

  38. Bibow S, Polyhach Y, Eichmann C, Chi CN, Kowal J, Albiez S, McLeod RA, Stahlberg H, Jeschke G, Guntert P, Riek R (2017) Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol 24(2):187–193. https://doi.org/10.1038/nsmb.3345

    Article  CAS  PubMed  Google Scholar 

  39. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  CAS  PubMed  Google Scholar 

  40. Wagner G (1995) The importance of being floppy. Nat Struct Mol Biol 2(4):255–257

    Article  CAS  Google Scholar 

  41. Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106(5):1672–1699. https://doi.org/10.1021/cr040422h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5):1624–1671. https://doi.org/10.1021/cr040421p

    Article  CAS  PubMed  Google Scholar 

  43. Bibow S, Hiller S (2018) A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J

    Google Scholar 

  44. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Bba-Proteins Proteom 1814(8):942–968. https://doi.org/10.1016/j.bbapap.2010.10.012

    Article  CAS  Google Scholar 

  45. Morin S (2011) A practical guide to protein dynamics from N-15 spin relaxation in solution. Prog Nucl Mag Res Sp 59(3):245–262. https://doi.org/10.1016/j.pnmrs.2010.12.003

    Article  CAS  Google Scholar 

  46. Palmer AG 3rd (2014) Chemical exchange in biomacromolecules: past, present, and future. J Magn Reson 241:3–17. https://doi.org/10.1016/j.jmr.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kempf JG, Loria JP (2004) Measurement of intermediate exchange phenomena. Methods Mol Biol 278:185–231. https://doi.org/10.1385/1-59259-809-9:185

    Article  CAS  PubMed  Google Scholar 

  48. Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5):1624–1671. https://doi.org/10.1021/cr040421p

    Article  CAS  PubMed  Google Scholar 

  49. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochimica et biophysica acta 1814 (8):942–968. doi:Doi https://doi.org/10.1016/J.Bbapap.2010.10.012

  50. Morin S (2011) A practical guide to protein dynamics from 15N spin relaxation in solution. Prog Nucl Magn Reson Spectrosc 59(3):245–262. https://doi.org/10.1016/j.pnmrs.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  51. Bibow S, Hiller S (2018) A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 286(9):1610–1623. https://doi.org/10.1111/febs.14639

    Article  CAS  PubMed  Google Scholar 

  52. Ishima R, Bagby S (2018) Protein dynamics revealed by CPMG dispersion. In: Webb GA (ed) Modern magnetic resonance. Springer International Publishing, Cham, pp 435–452. https://doi.org/10.1007/978-3-319-28388-3_44

    Chapter  Google Scholar 

  53. Stetz MA, Caro JA, Kotaru S, Yao X, Marques BS, Valentine KG, Wand AJ (2019) Characterization of internal protein dynamics and conformational entropy by NMR relaxation. Methods Enzymol 615:237–284. https://doi.org/10.1016/bs.mie.2018.09.010

    Article  PubMed  Google Scholar 

  54. Frey L, Hiller S, Riek R, Bibow S (2018) Lipid-and cholesterol-mediated time-scale-specific modulation of the outer membrane protein X dynamics in lipid bilayers. J Am Chem Soc 140(45):15402–15411

    Article  PubMed  Google Scholar 

  55. Lakomek NA, Ying J, Bax A (2012) Measurement of (1)(5)N relaxation rates in perdeuterated proteins by TROSY-based methods. J Biomol NMR 53(3):209–221. https://doi.org/10.1007/s10858-012-9626-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lakomek NA, Kaufman JD, Stahl SJ, Louis JM, Grishaev A, Wingfield PT, Bax A (2013) Internal dynamics of the homotrimeric HIV-1 viral coat protein gp41 on multiple time scales. Angew Chem Int Ed Engl 52(14):3911–3915. https://doi.org/10.1002/anie.201207266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee W, Tonelli M, Markley JL (2014) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mulder FA, de Graaf RA, Kaptein R, Boelens R (1998) An off-resonance rotating frame relaxation experiment for the investigation of macromolecular dynamics using adiabatic rotations. J Magn Reson 31:351–357

    Article  Google Scholar 

  59. Garwood M, Ke Y (1991) Symmetric pulses to induce arbitrary flip angles with compensation for RF inhomogeneity and resonance offsets. J Magn Reson (1969) 94(3):511–525

    Article  Google Scholar 

  60. Lee D, Hilty C, Wider G, Wuthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178(1):72–76

    Article  CAS  PubMed  Google Scholar 

  61. Bibow S, Polyhach Y, Eichmann C, Chi CN, Kowal J, Albiez S, McLeod RA, Stahlberg H, Jeschke G, Guntert P, Riek R (2017) Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol 24(2):187–193. https://doi.org/10.1038/nsmb.3345

    Article  CAS  PubMed  Google Scholar 

  62. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

  63. Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S (2018) Sequence-specific solution NMR assignments of the beta-barrel Insertase BamA to monitor its conformational Ensemble at the Atomic Level. J Am Chem Soc 140(36):11252–11260. https://doi.org/10.1021/jacs.8b03220

    Article  CAS  PubMed  Google Scholar 

  64. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 - reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231. https://doi.org/10.1016/S0076-6879(09)64011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bibow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bibow, S. (2020). Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics