Skip to main content

Detection of DNA Damage-Induced DSBs by the Contour-Clamped Homogeneous Electric Field (CHEF) System in Mammalian Cells

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

Double-strand breaks (DSBs) and their repair mechanisms are essential for normal cell life. However, quantitative analysis of DSBs on mammalian whole chromosomes remains difficult. The method described here enables the quantitative detection of mammalian chromosomal DSBs by pulsed-field gel electrophoresis (PFGE) using a contour-clamped homogeneous electric field (CHEF). We illustrate this method by measuring DNA damage-induced DSBs in mammalian cells. The electrophoresis conditions presented here enabled the visualization of fragmented DNA (several mega-base pairs down to 500 kbp) as a single band. Using this protocol, about 10–45 samples can be analyzed on a single gel, depending on the direction of electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kawashima Y, Yamaguchi N, Teshima R et al (2017) Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 22:84–93. https://doi.org/10.1111/gtc.12457

    Article  CAS  Google Scholar 

  2. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294. https://doi.org/10.1038/nature10760

    Article  CAS  Google Scholar 

  3. Hanada K, Budzowska M, Modesti M et al (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25:4921–4932. https://doi.org/10.1038/sj.emboj.7601344

    Article  CAS  Google Scholar 

  4. Hanada K, Budzowska M, Davies SL et al (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14:1096–1104. https://doi.org/10.1038/nsmb1313

    Article  CAS  Google Scholar 

  5. Vrouwe MG, Pines A, Overmeer RM et al (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124:435–446. https://doi.org/10.1242/jcs.075325

    Article  CAS  Google Scholar 

  6. Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. https://doi.org/10.1038/nprot.2006.5

    Article  CAS  Google Scholar 

  7. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75. https://doi.org/10.1016/0092-8674(84)90301-5

    Article  CAS  Google Scholar 

  8. Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2:677–684. https://doi.org/10.1038/nprot.2007.94

    Article  CAS  Google Scholar 

  9. Frazier M, Gibbs RA, Muzny DM et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    Article  Google Scholar 

  10. Chu G, Vollrath D, Davis R (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585. https://doi.org/10.1126/science.3538420

    Article  CAS  Google Scholar 

  11. Gardiner K, Patterson D (1989) Transverse alternating field electrophoresis and applications to mammalian genome mapping. Electrophoresis 10:296–302. https://doi.org/10.1002/elps.1150100505

    Article  CAS  Google Scholar 

  12. Southern EM, Anand R, Brown WRA, Fletcher DS (1987) A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res 15:5925–5943. https://doi.org/10.1093/nar/15.15.5925

    Article  CAS  Google Scholar 

  13. Nassonova ES (2008) Pulsed field gel electrophoresis: theory, instruments and applications. Tsitologiia 50:927–935. https://doi.org/10.1134/S1990519X08060011

    CAS  Google Scholar 

  14. Zellweger R, Dalcher D, Mutreja K et al (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208:563–579. https://doi.org/10.1083/jcb.201406099

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuri Takiguchi or Kunihiro Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takiguchi, Y., Kariyazono, R., Ohta, K. (2020). Detection of DNA Damage-Induced DSBs by the Contour-Clamped Homogeneous Electric Field (CHEF) System in Mammalian Cells. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics