Skip to main content

CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

Chagas disease is a vector-borne tropical disease affecting millions of people worldwide, for which there is no vaccine or satisfactory treatment available. It is caused by the protozoan parasite Trypanosoma cruzi and considered endemic from North to South America. This parasite has unique metabolic and structural characteristics that make it an attractive organism for basic research. The genetic manipulation of T. cruzi has been historically challenging, as compared to other pathogenic protozoans. However, the use of the prokaryotic CRISPR/Cas9 system for genome editing has significantly improved the ability to generate genetically modified T. cruzi cell lines, becoming a powerful tool for the functional study of proteins in different stages of this parasite’s life cycle, including infective trypomastigotes and intracellular amastigotes. Using the CRISPR/Cas9 method that we adapted to T. cruzi, it has been possible to perform knockout, complementation and in situ tagging of T. cruzi genes. In our system we cotransfect T. cruzi epimastigotes with an expression vector containing the Cas9 sequence and a single guide RNA, together with a donor DNA template to promote DNA break repair by homologous recombination. As a result, we have obtained homogeneous populations of mutant epimastigotes using a single resistance marker to modify both alleles of the gene. Mitochondrial Ca2+ transport in trypanosomes is critical for shaping the dynamics of cytosolic Ca2+ increases, for the bioenergetics of the cells, and for viability and infectivity. In this chapter we describe the most effective methods to achieve genome editing in T. cruzi using as example the generation of mutant cell lines to study proteins involved in calcium homeostasis. Specifically, we describe the methods we have used for the study of three proteins involved in the calcium signaling cascade of T. cruzi: the inositol 1,4,5-trisphosphate receptor (TcIP3R), the mitochondrial calcium uniporter (TcMCU) and the calcium-sensitive pyruvate dehydrogenase phosphatase (TcPDP), using CRISPR/Cas9 technology as an approach to establish their role in the regulation of energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  2. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  3. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. https://doi.org/10.1534/genetics.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32(8):819–821. https://doi.org/10.1038/nbt.2925

    Article  CAS  PubMed  Google Scholar 

  8. Lander N, Li ZH, Niyogi S, Docampo R (2015) CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio 6(4):e01012–e01015. https://doi.org/10.1128/mBio.01012-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S (2014) Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9(6):e100450. https://doi.org/10.1371/journal.pone.0100450

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL (2015) CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6(1):e02097–e02014. https://doi.org/10.1128/mBio.02097-14

    Article  CAS  Google Scholar 

  11. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y (2015) First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17(10):1405–1412. https://doi.org/10.1111/cmi.12456

    Article  CAS  PubMed  Google Scholar 

  13. Lander N, Chiurillo MA, Docampo R (2016) Genome editing by CRISPR/Cas9: a game change in the genetic manipulation of protists. J Eukaryot Microbiol 63(5):679–690. https://doi.org/10.1111/jeu.12338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forsyth CJ, Hernandez S, Olmedo W, Abuhamidah A, Traina MI, Sanchez DR, Soverow J, Meymandi SK (2016) Safety profile of nifurtimox for treatment of Chagas disease in the United States. Clin Infect Dis 63(8):1056–1062. https://doi.org/10.1093/cid/ciw477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Docampo R (2011) Molecular parasitology in the 21st century. Essays Biochem 51:1–13. https://doi.org/10.1042/bse0510001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R (2016) CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 291(49):25505–25515. https://doi.org/10.1074/jbc.M116.749655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiurillo MA, Lander N, Bertolini MS, Storey M, Vercesi AE, Docampo R (2017) Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi. MBio 8(3):e00574–e00517. https://doi.org/10.1128/mBio.00574-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soares Medeiros LC, South L, Peng D, Bustamante JM, Wang W, Bunkofske M, Perumal N, Sanchez-Valdez F, Tarleton RL (2017) Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins. MBio 8(6):e01788–e01717. https://doi.org/10.1128/mBio.01788-17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Costa FC, Francisco AF, Jayawardhana S, Calderano SG, Lewis MD, Olmo F, Beneke T, Gluenz E, Sunter J, Dean S, Kelly JM, Taylor MC (2018) Expanding the toolbox for Trypanosoma cruzi: a parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl Trop Dis 12(4):e0006388. https://doi.org/10.1371/journal.pntd.0006388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lander N, Chiurillo MA, Bertolini MS, Storey M, Vercesi AE, Docampo R (2018) Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of Trypanosoma cruzi. J Biol Chem 293(45):17402–17417. https://doi.org/10.1074/jbc.RA118.004498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lander N, Chiurillo MA, Vercesi AE, Docampo R (2017) Endogenous C-terminal tagging by CRISPR/Cas9 in Trypanosoma cruzi. Bio Protoc 7(10). https://doi.org/10.21769/BioProtoc.2299

  22. Moreno SN, Silva J, Vercesi AE, Docampo R (1994) Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med 180(4):1535–1540

    Article  CAS  PubMed  Google Scholar 

  23. Lammel EM, Barbieri MA, Wilkowsky SE, Bertini F, Isola EL (1996) Trypanosoma cruzi: involvement of intracellular calcium in multiplication and differentiation. Exp Parasitol 83(2):240–249. https://doi.org/10.1006/expr.1996.0070

    Article  CAS  PubMed  Google Scholar 

  24. Rohloff P, Rodrigues CO, Docampo R (2003) Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126(2):219–230

    Article  CAS  PubMed  Google Scholar 

  25. Engman DM, Krause KH, Blumin JH, Kim KS, Kirchhoff LV, Donelson JE (1989) A novel flagellar Ca2+-binding protein in trypanosomes. J Biol Chem 264(31):18627–18631

    CAS  PubMed  Google Scholar 

  26. Huang G, Vercesi AE, Docampo R (2013) Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat Commun 4:2865. https://doi.org/10.1038/ncomms3865

    Article  CAS  PubMed  Google Scholar 

  27. Docampo R, Vercesi AE (1989) Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J Biol Chem 264(1):108–111

    CAS  PubMed  Google Scholar 

  28. Vercesi AE, Bernardes CF, Hoffmann ME, Gadelha FR, Docampo R (1991) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 266(22):14431–14434

    CAS  PubMed  Google Scholar 

  29. Oberholzer M, Morand S, Kunz S, Seebeck T (2006) A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol Biochem Parasitol 145(1):117–120. https://doi.org/10.1016/j.molbiopara.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  30. Bone GJ, Steinert M (1956) Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature 178:2. https://doi.org/10.1038/178308a0

    Article  Google Scholar 

  31. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(Database issue):D457–D462. https://doi.org/10.1093/nar/gkp851

    Article  CAS  PubMed  Google Scholar 

  32. Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1(4):e000033. https://doi.org/10.1099/mgen.0.000033

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, Second Satellite M (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104(7):1051–1054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Anibal E. Vercesi (University of Campinas, Brazil) for his encouragement and advice. This work was funded by the U.S. National Institutes of Health (grants AI107663 and AI140421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noelia Lander or Roberto Docampo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lander, N., Chiurillo, M.A., Docampo, R. (2020). CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics