Skip to main content

Underappreciated Chemical Interactions in Protein–Ligand Complexes

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

Non-covalent interactions lie at the bases of the molecular recognition process. In medicinal chemistry, understanding how bioactive molecules interact with their target can help to explain structure–activity relationships (SAR) and improve potency of lead compounds. In particular, computational analysis of protein–ligand complexes can help to unravel key interactions and guide structure-based drug design.

The literature describing protein-ligand complexes is typically focused on few types of non-covalent interactions (e.g., hydrophobic contacts, hydrogen bonds, and salt bridges). Stacking interactions involving aromatic rings are also relatively well known to medicinal chemistry practitioners. Potency optimization efforts are often focused on targeting these interactions. However, a variety of underappreciated interactions were shown to have a relevant effect on the stabilization of protein–ligand complexes. This chapter aims at listing selected non-covalent interactions and discuss some examples on how they can impact drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  2. Singh J, Petter RC, Baillie TA et al (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317

    Article  CAS  PubMed  Google Scholar 

  3. Bissantz C, Kuhn B, Stahl M (2010) A medicinal Chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferreira de Freitas R, Schapira M (2017) A systematic analysis of atomic protein–ligand interactions in the PDB. Med Chem Commun 8:1970–1981

    Article  CAS  Google Scholar 

  5. Raha K, Peters MB, Wang B et al (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12:725–731

    Article  CAS  PubMed  Google Scholar 

  6. Kitaura K, Ikeo E, Asada T et al (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  7. Fox JM, Zhao M, Fink MJ et al (2018) The molecular origin of enthalpy/entropy compensation in biomolecular recognition. Annu Rev Biophys 47:223–250

    Article  CAS  PubMed  Google Scholar 

  8. Groom CR, Bruno IJ, Lightfoot MP et al (2016) The Cambridge structural database. Acta Crystallogr B 72:171–179

    Article  CAS  Google Scholar 

  9. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glasstone S (1937) The structure of some molecular complexes in the liquid phase. Trans Faraday Soc 33:200–206

    Article  CAS  Google Scholar 

  11. IUPAC—hydrogen bond (HT07050). https://goldbook.iupac.org/terms/view/HT07050

  12. Linus P (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc 53:1367–1400

    Article  Google Scholar 

  13. Lippincott ER, Schroeder R (1955) One-dimensional model of the hydrogen bond. J Chem Phys 23:1099–1106

    Article  CAS  Google Scholar 

  14. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press/International Union of Crystallography, Oxford

    Google Scholar 

  15. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  16. Sutor DJ (1962) The C–H⋯O hydrogen bond in crystals. Nature 195:68–69

    Article  CAS  Google Scholar 

  17. Sutor DJ (1963) 204. Evidence for the existence of C–H⋯O hydrogen bonds in crystals. J Chem Soc:1105–1110

    Article  CAS  Google Scholar 

  18. Donohue J (1968) Selected topics in hydrogen bonding. In: Rich A, Davidson NR, Pauling L (eds) Structural chemistry and molecular biology. W. H. Freeman, San Francisco

    Google Scholar 

  19. Taylor R, Kennard O (1982) Crystallographic evidence for the existence of CH⋯O, CH⋯N and CH⋯Cl hydrogen bonds. J Am Chem Soc 104:5063–5070

    Article  CAS  Google Scholar 

  20. Desiraju GR (1991) The C-H⋯O hydrogen bond in crystals: what is it? Acc Chem Res 24:290–296

    Article  CAS  Google Scholar 

  21. Steiner T (1997) Unrolling the hydrogen bond properties of C–H···O interactions. Chem Commun 8:727–734

    Article  Google Scholar 

  22. Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH⋯O hydrogen bonds in protein–ligand binding. Proteins 49:567–576

    Article  CAS  PubMed  Google Scholar 

  23. Pierce AC, ter Haar E, Binch HM et al (2005) CH···O and CH···N hydrogen bonds in ligand design: a novel Quinazolin-4-ylthiazol-2-ylamine protein kinase inhibitor. J Med Chem 48:1278–1281

    Article  CAS  PubMed  Google Scholar 

  24. Hunter CA, Sanders JKM (1990) The nature of π–π Interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  25. Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for π–π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893

    Article  CAS  PubMed  Google Scholar 

  26. Taylor RD, MacCoss M, Lawson ADG (2014) Rings in Drugs. J Med Chem 57:5845–5859

    Article  CAS  PubMed  Google Scholar 

  27. Huber RG, Margreiter MA, Fuchs JE et al (2014) Heteroaromatic π-stacking energy landscapes. J Chem Inf Model 54:1371–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sinnokrot MO, Sherrill CD (2004) Substituent effects in π−π interactions: Sandwich and T-shaped configurations. J Am Chem Soc 126:7690–7697

    Article  CAS  PubMed  Google Scholar 

  29. Liao S-M, Du Q-S, Meng J-Z et al (2013) The multiple roles of histidine in protein interactions. Chem Cent J 7:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harder M, Kuhn B, Diederich F (2013) Efficient stacking on protein amide fragments. ChemMedChem 8:397–404

    Article  CAS  PubMed  Google Scholar 

  31. Vernon RM, Chong PA, Tsang B et al (2018) Pi-pi contacts are an overlooked protein feature relevant to phase separation. elife 7:e31486

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar K, Woo SM, Siu T et al (2018) Cation–π interactions in protein–ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem Sci 9:2655–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh NJ, Min SK, Kim DY et al (2009) Comprehensive energy analysis for various types of π-interaction. J Chem Theory Comput 5:515–529

    Article  CAS  PubMed  Google Scholar 

  34. Imai YN, Inoue Y, Nakanishi I et al (2008) Cl–π interactions in protein–ligand complexes. Protein Sci 17:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li P, Maier JM, Vik EC et al (2017) Stabilizing fluorine–π interactions. Angew Chem Int Ed Engl 56:7209–7212

    Article  CAS  PubMed  Google Scholar 

  36. Dougherty DA (2013) The Cation−π interaction. Acc Chem Res 46:885–893

    CAS  PubMed  Google Scholar 

  37. Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Proc Natl Acad Sci U S A 96:9459–9464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dougherty DA (2007) Cation-π interactions involving aromatic amino acids. J Nutr 137:1504S–1508S

    Article  CAS  PubMed  Google Scholar 

  39. Olsen JA, Balle T, Gajhede M et al (2014) Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors. PLoS One 9:e91232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilcken R, Zimmermann MO, Lange A et al (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388

    Article  CAS  PubMed  Google Scholar 

  41. Shinada NK, de Brevern AG, Schmidtke P (2019) Halogens in protein–ligand binding mechanism: a structural perspective. J Med Chem. In Press

    Google Scholar 

  42. Coates M, Ho PS (2016) Computational tools to model halogen bonds in medicinal chemistry. J Med Chem 59:1655–1670

    Article  CAS  Google Scholar 

  43. Kurczab R, Canale V, Satała G et al (2018) Amino acid hot spots of halogen bonding: a combined theoretical and experimental case study of the 5-HT7 receptor. J Med Chem 61:8717–8733

    Article  CAS  PubMed  Google Scholar 

  44. Paulini R, Müller K, Diederich F (2005) Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed Engl 44:1788–1805

    Article  CAS  PubMed  Google Scholar 

  45. Olsen JA, Banner DW, Seiler P et al (2003) A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme active site: evidence for C-F⋯C=O interactions. Angew Chem Int Ed Engl 42:2507–2511

    Article  CAS  PubMed  Google Scholar 

  46. Pollock J, Borkin D, Lund G et al (2015) Rational design of orthogonal multipolar interactions with fluorine in protein–ligand complexes. J Med Chem 58:7465–7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heifetz A, James T, Southey M et al (2019) Characterising GPCR–ligand interactions using a fragment molecular orbital-based approach. Curr Opin Struct Biol 55:85–92

    Article  CAS  PubMed  Google Scholar 

  48. Heifetz A, Aldeghi M, Chudyk EI et al (2016) Using the fragment molecular orbital method to investigate agonist–orexin-2 receptor interactions. Biochem Soc Trans 44:574–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang J-X, Sheong FK, Lin Z (2018) Unravelling chemical interactions with principal interacting orbital analysis. Chemistry 24:9639–9650

    Article  CAS  PubMed  Google Scholar 

  50. Xu Z, Zhang Q, Shi J et al (2019) Underestimated noncovalent interactions in protein data Bank. J Chem Inf Model. In Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Anighoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anighoro, A. (2020). Underappreciated Chemical Interactions in Protein–Ligand Complexes. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics