Skip to main content

An Efficient Method of Mitochondrial DNA Isolation from Vigna radiata for Genomic Studies

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Isolation of mitochondrial DNA from root tissues of mung bean (Vigna radiata) is quite tedious, complex, and often results in low yield. Hence here we show a simple, rapid, and improved protocol for isolation of mitochondrial DNA from root tissues of hydroponically grown mung bean plants. This method involves purification of mitochondria and subsequent isolation of DNA from obtained purified mitochondria. For this purpose, mitochondria were isolated using a discontinuous Percoll gradient centrifugation followed by RNase I treatment to the isolated DNA to remove any traces of RNA contamination. The mitochondrial DNA was isolated from mitochondrial samples by commonly used CTAB method. The specificity of isolated mitochondrial DNA was confirmed using mtDNA-specific genes (NAD1 and COX3). β-Actin primer was used to check the nuclear DNA contamination. PCR amplification was observed in mtDNA specific genes NAD1 and COX3 except nuclear encoded β-actin gene suggesting that mitochondrial DNA was not contaminated by nuclear DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanlerberghe GC (2013) Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  Google Scholar 

  2. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59

    Article  CAS  Google Scholar 

  3. Kowaltowski AJ (2000) Alternative mitochondrial functions in cell physiopathology: beyond ATP production. Braz J Med Biol Res 33:241–250

    Article  CAS  Google Scholar 

  4. Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  CAS  Google Scholar 

  5. Van Aken O, Van Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20:754–766

    Article  Google Scholar 

  6. Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF (2016) The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 100:238–256

    Article  CAS  Google Scholar 

  7. Kim YJ, Zhang D (2018) Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23:53–65

    Article  CAS  Google Scholar 

  8. Siqueira JA, Hardoim P, Ferreira PCG, Nunes-Nesi A, Hemerly AS (2018) Unraveling interfaces between energy metabolism and cell cycle in plants. Trends Plant Sci 23:731–747

    Article  CAS  Google Scholar 

  9. Taanman JW (1999) The mitochondrial genome structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  Google Scholar 

  10. Jacob JE, Vanholme B, Van Leeuwen T, Gheysen G (2009) A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Res Notes 2:192–202

    Article  Google Scholar 

  11. Michaels GS, Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev Biol 94:246–251

    Article  CAS  Google Scholar 

  12. Shuster RC, Rubenstein AJ, Wallace DC (1988) Mitochondrial DNA in anucleate human blood cells. Biochem Biophys Res Commun 155:1360–1365

    Article  CAS  Google Scholar 

  13. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513

    Article  CAS  Google Scholar 

  14. Wiesner RJ, Rüegg JC, Morano I (1992) Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues. Biochem Biophys Res Commun 183:553–559

    Article  CAS  Google Scholar 

  15. Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Article  CAS  Google Scholar 

  16. Galper JB, Darnell JE (1969) The presence of N-formyl-methionyl-tRNA in HeLa cell mitochondria. Biochem Biophys Res Commun 34:205–214

    Article  CAS  Google Scholar 

  17. Ladoukakis ED, Zouros E (2017) Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res 24:2–9

    Google Scholar 

  18. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  Google Scholar 

  19. Galtier N (2011) The intriguing evolutionary dynamics of plant mitochondrial DNA. BMC Biol 9:61–63

    Article  CAS  Google Scholar 

  20. Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252

    Article  CAS  Google Scholar 

  21. Triboush SO, Danilenko NG, Davydenko OG (1998) A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol Biol Rep 16:183–189

    Article  CAS  Google Scholar 

  22. Li WQ, Zhang GS, Wang K, Niu N, Pan DL (2007) An efficient method for isolation of mitochondrial DNA in wheat. Yi Chuan 29:771–775

    Article  CAS  Google Scholar 

  23. Chaudhary A, Chaudhary S, Ghosh A, Vuduthala S, Singh KM, Chikara SK (2015) A Rapid, low cost, and efficient method for isolation of high quality mitochondrial DNA from Oryza sativa. J Crop Sci Biotechnol 18:155–160

    Article  Google Scholar 

  24. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PS is supported by a senior research fellowship from UGC, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapuganti Jagadis Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, P., Sahoo, R.K., Bulle, M., Gupta, K.J. (2020). An Efficient Method of Mitochondrial DNA Isolation from Vigna radiata for Genomic Studies. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics