Skip to main content

New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson LH (1998) Nucleotide excision repair: its relation to human disease. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, volume 2: DNA repair in higher eukaryotes. Humana, Totowa, N.J, pp 335–393

    Google Scholar 

  2. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    CAS  PubMed  Google Scholar 

  3. Seebode C, Lehman J, Emmert S (2016) Photocarcinogenesis and skin cancer prevention strategies. Anticancer Res 36:1371–1378

    CAS  PubMed  Google Scholar 

  4. Bukowska B, Karwowski BT (2018) Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci 195:6–18

    CAS  PubMed  Google Scholar 

  5. Reed E (1998) Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 24:331–344

    CAS  PubMed  Google Scholar 

  6. Gillet LC, Schaefer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276

    CAS  PubMed  Google Scholar 

  7. Kaneko M, Cerutti PA (1980) Excision of N-acetoxy-2-acetylaminofluorene-induced DNA adducts from chromatin fractions of human fibroblasts. Cancer Res 40:4313–4319

    CAS  PubMed  Google Scholar 

  8. Andersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D (1996) Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol 38:406–416

    CAS  PubMed  Google Scholar 

  9. Gamesik MP, Dolan ME, Andersson BS, Murray D (1999) Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharmaceut Des 5:587–605

    Google Scholar 

  10. Mullenders LHF, Berneberg M (2001) Photoimmunology and nucleotide excision repair: impact of transcription coupled and global genome excision repair. J Photochem Photobiol B 56:97–100

    Google Scholar 

  11. Covertey D, Kenney MK, Rupp WD, Lane DP, Wood RD (1991) Requirement of the replication protein SSB in human DNA excision repair. Nature 347:538–541

    Google Scholar 

  12. Huang JC, Svoboda DL, Reardon JT, Sancar A (1992) Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci U S A 89:3664–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shivji KK, Kenney MP, Wood RD (1992) Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374

    CAS  PubMed  Google Scholar 

  14. Grossman L, Thiagalingam S (1993) Nucleotide excision repair, a tracking mechanism in search of damage. J Biol Chem 268:16871–16874

    CAS  PubMed  Google Scholar 

  15. Satoh MS, Jones CJ, Wood RD, Lindahl T (1993) DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci U S A 90:6335–6339

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang JC, Hsu DS, Kazantsev A, Sancar A (1994) Substrate specificity of human exinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A 91:12213–12217

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105:370–388

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–369

    CAS  PubMed  Google Scholar 

  19. Bootsma D, Hoeijmakers JHJ (1994) The molecular basis of nucleotide excision repair syndromes. Mutat Res 307:15–23

    CAS  PubMed  Google Scholar 

  20. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide exicision repair and its role in cancer and ageing. Nat Rev Mol Cell Biol 15:465

    CAS  PubMed  Google Scholar 

  21. Hanawalt PC (2002) Subpathways of nucleotide excision repair and their regulation. Oncogene 21:8949

    CAS  PubMed  Google Scholar 

  22. Schubert S, Lehmann J, Kalfon L, Slor H, Falik-Zacci TC, Emmert S (2014) Clinical utility gene card for: Xeroderma pigmentosum. Eur J Hum Genet 22:953

    Google Scholar 

  23. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656

    CAS  PubMed  Google Scholar 

  24. Painter RB, Cleaver JE (1969) Repair replication, unscheduled DNA synthesis and the repair of mammalian DNA. Radiat Res 37:451–466

    CAS  PubMed  Google Scholar 

  25. Cleaver JE, Thomas GH (1981) Measurement of unscheduled synthesis by autoradiography. In: Friedberg EC, Hanawalt PC (eds) DNA repair: a laboratory manual of research procedures, volume I. Marcel Dekker, New York, pp 277–287

    Google Scholar 

  26. Limsirichaikul S, Niimi A, Fawcett H, Lehmann A, Yamashita S, Ogi T (2009) A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 37:e31

    PubMed  PubMed Central  Google Scholar 

  27. Wienholz F, Vermeulen W, Marteijn JA (2017) Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair. Nucleic Acids Res 45:e68–e68

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia N, Nakazawa Y, Guo C, Shimada M et al (2015) A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat Protoc 10:12

    CAS  PubMed  Google Scholar 

  29. Pierzyńska-Mach A, Szczurek A, Cella Zanacchi F, Pennachietti F, Drukala JW (2016) Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy. Cell Cycle 15:1156–1167

    PubMed  PubMed Central  Google Scholar 

  30. Matsunaga T (2007) In vitro assays for evaluating the cellular responses to DNA damage induced by solar UV. AATEX 14:637–640

    Google Scholar 

  31. Thyagarajan B, Anderson KE, Lessard CJ et al (2007) Alkaline unwinding flow cytometry assay to measure nucleotide excision repair. Mutagenesis 22:147–153

    CAS  PubMed  Google Scholar 

  32. Rouget R, Auclair Y, Loignon M, Affar E-B, Drobetsky EA (2008) A sensitive flow cytometry-based nucleotide excision repair assay unexpectedly reveals that mitogen-activated protein kinase signaling does not regulate the removal of UV-induced DNA damage in human cells. J Biol Chem 283:5533–5541

    CAS  PubMed  Google Scholar 

  33. Latimer JJ, Nazir T, Flowers LC et al (2003) Unique tissue-specific level of DNA nucleotide excision repair in primary human mammary epithelial cultures. Exp Cell Res 291:111–121

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Latimer JJ, Rubinstein WS, Johnson JM et al (2005) Haploinsufficiency for BRCA1 is associated with normal levels of DNA nucleotide excision repair in breast tissue and blood lymphocytes. BMC Med Genet 6:26

    PubMed  PubMed Central  Google Scholar 

  35. Latimer JJ, Johnson JM, Miles TD et al (2008) Cell-type-specific level of DNA nucleotide excision repair in primary human mammary and ovarian epithelial cell cultures. Cell Tissue Res 333:461–467

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Latimer JJ, Johnson JM, Kelly CM et al (2010) Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S A 50:21725–21730

    Google Scholar 

  37. Liakos A, Lavinge MD, Fousteri M (2017) Nucleotide excision repair from neurodegeneration to cancer. Pers Med:17–39. Springer

    Google Scholar 

  38. Michalopoulos G, Sattler GL, O’Connor L, Pitot HC (1978) Unscheduled DNA synthesis induced by procarcinogens in suspensions and primary cultures of hepatocytes on collagen membranes. Cancer Res 38:1866–1871

    CAS  PubMed  Google Scholar 

  39. Williams GM, Mori H, McQueen CA (1989) Structure-activity relationships in the rat hepatocyte DNA-repair test for 300 chemicals. Mutat Res 221:263–286

    CAS  PubMed  Google Scholar 

  40. Killary AM, Fournier REK (1984) A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell 38:523–534

    CAS  PubMed  Google Scholar 

  41. Clarke R, Leonessa F, Brunner WN, Thompson EW (2000) In vitro models. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast. Lippincott Williams and Wilkins, Philadelphia, pp 347–348

    Google Scholar 

  42. Liu MT, Chen YR, Chen SC et al (2004) Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23:2531–2539

    CAS  PubMed  Google Scholar 

  43. Bowman KK, Sicard DM, Ford JM, Hanawalt PC (2000) Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells. Mol Carcinogen 29:17–24

    CAS  Google Scholar 

  44. Ford JM, Baron EL, Hanawalt PC (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res 58:599–603

    CAS  PubMed  Google Scholar 

  45. Elenbaas B, Spirio L, Koemer F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Latimer JJ, Hultner ML, Cleaver JE, Pederson RA (1996) Elevated DNA excision repair capacity in the extra embryonic mesoderm of the midgestation mouse embryo. Exp Cell Res 228:19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasmussen RE, Painter RB (1964) Evidence for repair of UV damaged deoxyribonucleic acid in cultured mammalian cells. Nature 203:1360–1362

    CAS  PubMed  Google Scholar 

  48. Kam EY, Pitts JD (1984) Computer-assisted grain counting for autoradiography. Comput Programs Biomed 19:81–83

    CAS  PubMed  Google Scholar 

  49. Schellart NA, Zweijpfenning RC, van Marle J, Huijsmans DP (1986) Computerized pattern recognition used for grain counting in high resolution autoradiographs with low grain densities. Comput Methods Prog Biomed 23:103–109

    CAS  Google Scholar 

  50. Mize RR, Thouron C, Lucas L, Harlan R (1994) Semiautomatic image analysis for grain counting in in situ hybridization experiments. NeuroImage 1:163–172

    CAS  PubMed  Google Scholar 

  51. Steier H, Cleaver JE (1969) Exposure chamber for quantitative ultraviolet photobiology. Lab Prac 18:1295

    CAS  Google Scholar 

  52. Carreau M, Eveno E, Quilliet X et al (1995) Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes. Carcinogenesis 16:1003–1009

    CAS  PubMed  Google Scholar 

  53. Qiao Y, Spitz MR, Shen H et al (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23:295–299

    CAS  PubMed  Google Scholar 

  54. Svetlova M, Solovjeva L, Pleskach N et al (2002) Clustered sites of DNA repair synthesis during early nucleotide excision repair in ultraviolet light-irradiated quiescent human fibroblasts. Exp Cell Res 276:284–295

    CAS  PubMed  Google Scholar 

  55. Forlenza M, Latimer J, Baum A (2000) The effects of stress on DNA repair capacity. Psychol Health 15:881–891

    PubMed  PubMed Central  Google Scholar 

  56. Moriwaki S, Ray S, Tarone RE, Kraemer KH, Grossman L (1996) The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. Mutat Res 364:117–123

    PubMed  Google Scholar 

  57. Kraemer KH, Levy DD, Parris CN et al (1994) Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J Invest Dermatol 103(Suppl. 5):96S–101S

    CAS  PubMed  Google Scholar 

  58. Kashiyama K, Nakazawa Y, Pilz DT et al (2013) Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet 92:807–819

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsia KT, Millar MR, King S et al (2003) DNA repair gene Ercc1 is essential for normal spermatogenesis and oogenesis and for functional integrity of germ cell DNA in the mouse. Development 130:369–378

    CAS  PubMed  Google Scholar 

  60. Roza L, Vermeulen W, Bergen Henegouwen JB et al (1990) Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Cancer Res 15:1905–1910

    Google Scholar 

  61. Ye N, Bianchi MS, Bianchi NO, Holmquist GP (1999) Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 435:43–61

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean J. Latimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pimpley, M.R., Foley, M.L., Latimer, J.J. (2020). New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics