Skip to main content

In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Microtubules are dynamic non-covalent mesoscopic polymers. Their dynamic behavior is essential for cell biological processes ranging from intracellular transport to cell division and neurogenesis. Fluorescence microscopy has been the method of choice for monitoring microtubule dynamics in the last two decades. However, fluorescent microtubules are prone to photodamage that alters their dynamics, and the fluorescent label itself can affect microtubule properties. Dark-field imaging is a label-free technique that can generate high signal-to-noise, low-background images of microtubules at high acquisition rates without the photobleaching inherent to fluorescence microscopy. Here, we describe how to image in vitro microtubule dynamics using dark-field microscopy. The ability to image microtubules label-free allows the investigation of the dynamic properties of non-abundant tubulin species where fluorescent labeling is not feasible, free from the confounding effects arising from the addition of fluorescent labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuriyama R, Miki-Noumura T (1975) Light-microscopic observations of individual microtubules reconstituted from brain tubulin. J Cell Sci 19(3):607–620

    CAS  PubMed  Google Scholar 

  2. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237

    Article  CAS  Google Scholar 

  3. Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107(4):1437–1448

    Article  CAS  Google Scholar 

  4. Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321(6070):605

    Article  CAS  Google Scholar 

  5. Summers K, Kirschner MW (1979) Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J Cell Biol 83(1):205–217

    Article  CAS  Google Scholar 

  6. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726. https://doi.org/10.1038/nrm4084

    Article  CAS  PubMed  Google Scholar 

  7. Guo H, Xu C, Liu C, Qu E, Yuan M, Li Z, Cheng B, Zhang D (2006) Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J 90(6):2093–2098

    Article  CAS  Google Scholar 

  8. Aumeier C, Schaedel L, Gaillard J, John K, Blanchoin L, Thery M (2016) Self-repair promotes microtubule rescue. Nat Cell Biol 18(10):1054–1064. https://doi.org/10.1038/ncb3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vigers GP, Coue M, McIntosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107(3):1011–1024

    Article  CAS  Google Scholar 

  10. Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23(22):4393–4401. https://doi.org/10.1091/mbc.E12-06-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vemu A, Garnham CP, Lee DY, Roll-Mecak A (2014) Generation of differentially modified microtubules using in vitro enzymatic approaches. Methods Enzymol 540:149–166. https://doi.org/10.1016/B978-0-12-397924-7.00009-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A (2016) Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem 291(25):12907–12915. https://doi.org/10.1074/jbc.C116.731133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R, Uchimura S, Muto E (2013) Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett 587(21):3450–3455. https://doi.org/10.1016/j.febslet.2013.08.032

    Article  CAS  PubMed  Google Scholar 

  14. Ti SC, Pamula MC, Howes SC, Duellberg C, Cade NI, Kleiner RE, Forth S, Surrey T, Nogales E, Kapoor TM (2016) Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev Cell 37(1):72–84. https://doi.org/10.1016/j.devcel.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson V, Ayaz P, Huddleston P, Rice LM (2011) Design, overexpression, and purification of polymerization-blocked yeast alphabeta-tubulin mutants. Biochemistry 50(40):8636–8644. https://doi.org/10.1021/bi2005174

    Article  CAS  PubMed  Google Scholar 

  16. Chaaban S, Jariwala S, Hsu CT, Redemann S, Kollman JM, Muller-Reichert T, Sept D, Bui KH, Brouhard GJ (2018) The structure and dynamics of C. elegans tubulin reveals the mechanistic basis of microtubule growth. Dev Cell 47(2):191–204, e198. https://doi.org/10.1016/j.devcel.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  17. Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177(4054):1104–1105

    Article  CAS  Google Scholar 

  18. Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A (2017) Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell 28(25):3564–3572. https://doi.org/10.1091/mbc.E17-02-0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geyer EA, Burns A, Lalonde BA, Ye X, Piedra FA, Huffaker TC, Rice LM (2015) A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Elife 4:e10113. https://doi.org/10.7554/eLife.10113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andrecka J, Arroyo JO, Lewis K, Cross RA, Kukura P (2016) Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy. Biophys J 110(1):214–217

    Article  CAS  Google Scholar 

  21. Mahamdeh M, Simmert S, Luchniak A, Schaeffer E, Howard J (2018) Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J Microsc 272(1):60–66

    Article  CAS  Google Scholar 

  22. Simmert S, Abdosamadi MK, Hermsdorf G, Schäffer E (2018) LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging. Opt Express 26(11):14499–14513

    Article  CAS  Google Scholar 

  23. Katsuki M, Drummond DR, Osei M, Cross RA (2009) Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue. J Biol Chem 284(43):29246–29250. https://doi.org/10.1074/jbc.C109.052159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kandel ME, Teng KW, Selvin PR, Popescu G (2017) Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11(1):647–655. https://doi.org/10.1021/acsnano.6b06945

    Article  CAS  PubMed  Google Scholar 

  25. Ueno H, Nishikawa S, Iino R, Tabata KV, Sakakihara S, Yanagida T, Noji H (2010) Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 98(9):2014–2023. https://doi.org/10.1016/j.bpj.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using muManager software. J Biol Methods 1(2):e10. https://doi.org/10.14440/jbm.2014.36

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ziółkowska NE, Roll-Mecak A (2013) In vitro microtubule severing assays. Methods Mol Biol 1046:323–334. https://doi.org/10.1007/978-1-62703-538-5_19; pmid: 23868597

  28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  29. Mukherjee A, Jenkins B, Fang C, Radke RJ, Banker G, Roysam B (2011) Automated kymograph analysis for profiling axonal transport of secretory granules. Med Image Anal 15(3):354–367. https://doi.org/10.1016/j.media.2010.12.005

    Article  PubMed  Google Scholar 

  30. Kapoor V, Hirst WG, Hentschel C, Preibisch S, Reber S (2019) MTrack: automated detection, tracking, and analysis of dynamic microtubules. Sci Rep 9(1):3794. https://doi.org/10.1038/s41598-018-37767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruhnow F, Zwicker D, Diez S (2011) Tracking single particles and elongated filaments with nanometer precision. Biophys J 100(11):2820–2828. https://doi.org/10.1016/j.bpj.2011.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

A.R.M. is supported by the intramural programs of the National Institute of Neurological Disorders and Stroke (NINDS) and the National, Heart, Lung, and Blood Institute (NHLBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Roll-Mecak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spector, J.O., Vemu, A., Roll-Mecak, A. (2020). In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics