Skip to main content

Ligand Fishing: An Approach for the Discovery of Inhibitors from Complex Biological Mixtures

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Abstract

Ligand fishing is a convenient bioanalytical screening method that is based on the affinity selection of a ligand from a complex biological sample by an immobilized receptor. It is a versatile affinity-based screening approach and it has found application in multiple interacting pairs such as enzyme-inhibitor/activator, antigen-antibody, receptor-ligand, and protein-protein. Important parameters that affect the successful operation of the method are the high specificity and strong binding affinity of the interacting pair (e.g., enzyme-ligand complex) and the elution of the bound ligand from the complex. This chapter provides protocols for the synthesis of affinity adsorbent and its application in off-line ligand-fishing procedure for a 6His-tagged glutathione transferase (GST).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chronopoulou EG, Ataya F, Labrou NE (2018) A microplate-based platform with immobilized human glutathione transferase A1-1 for high-throughput screening of plant-origin inhibitors. Curr Pharm Biotechnol 19:925–931

    Article  CAS  Google Scholar 

  2. Wubshet SG, Brighente IM, Moaddel R et al (2015) Magnetic ligand fishing as a targeting tool for HPLC-HRMS-SPE-NMR: α-glucosidase inhibitory ligands and alkylresorcinol glycosides from Eugenia catharinae. J Nat Prod 78:2657–2665

    Article  CAS  Google Scholar 

  3. Vanzolini KL, Ainsworth S, Bruyneel B et al (2018) Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon 152:1–8

    Article  CAS  Google Scholar 

  4. Dixon DP, Edwards R (2018) Protein-ligand fishing in planta for biologically active natural products using glutathione transferases. Front Plant Sci 9:1659. https://doi.org/10.3389/fpls.2018.01659

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhuo R, Liu H, Liu N et al (2016) Ligand fishing: a remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules 21:1516. https://doi.org/10.3390/molecules21111516

    Article  CAS  PubMed Central  Google Scholar 

  6. Wu GF, Jiang XL, Gong YZ et al (2019) Ligand fishing of anti-neurodegenerative components from Lonicera japonica using magnetic nanoparticles immobilised with monoamine oxidase B. J Sep Sci 42:1289–1298

    Article  CAS  Google Scholar 

  7. Van Breemen RB, Nikolic D, Bolton JL (1998) Metabolic screening using on-line ultrafiltration mass spectrometry. Drug Metab Dispos 26:85–90

    PubMed  Google Scholar 

  8. Li Y, Xu J, Chen Y et al (2015) Screening of inhibitors of glycogen synthase kinase-3beta from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography. J Chromatogr A 1425:8–16

    Article  CAS  Google Scholar 

  9. Kool J, Jonker N, Irth H et al (2011) Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods. Anal Bioanal Chem 401:1109–1125

    Article  CAS  Google Scholar 

  10. Asanomi Y, Yamaguchi H, Miyazaki M et al (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16:6041–6059

    Article  CAS  Google Scholar 

  11. Zhang Y, Shi S, Chen X et al (2014) Functionalized magnetic nanoparticles coupled with mass spectrometry for screening and identification of cyclooxygenase-1 inhibitors from natural products. J Chromatogr B 960:126–132

    Article  CAS  Google Scholar 

  12. Tao Y, Zhang Y, Cheng Y et al (2013) Rapid screening and identification of alpha-glucosidase inhibitors from Mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr 27:148–155

    Article  CAS  Google Scholar 

  13. Allocati N, Masulli M, Di Ilio C et al (2018) Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogene 7:8. https://doi.org/10.1038/s41389-017-0025-3

    Article  CAS  Google Scholar 

  14. Kim HS, Hage DS (2006) Immobilization methods for affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  15. Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49:335–360

    Article  CAS  Google Scholar 

  16. Ueda EK, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  CAS  Google Scholar 

  17. Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 9:151–156

    CAS  Google Scholar 

  18. Gutiérrez R, Martín del Valle EM, Galán MA (2007) Immobilized metal-ion affinity chromatography: status and trends. Sep Purif Rev 36:71e111. https://doi.org/10.1080/15422110601166007

    Article  CAS  Google Scholar 

  19. Prasanna RR, Vijayalakshmi MA (2010) Immobilized metal-ion affinity systems for recovery and structure function studies of proteins at molecular, supramolecular, and cellular levels. Pure Appl Chem 82:39e55. https://doi.org/10.1016/j.jbiotec.2008.07.614

    Article  Google Scholar 

  20. Hage DS, Anguizola JA, Li R et al (2013) Affinity chromatography. In: Liquid chromatography: applications. Elsevier Inc, pp 1–23. https://doi.org/10.1016/B978-0-12-415806-1.00001-2

  21. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  CAS  Google Scholar 

  22. Wong JW, Albright RL, Wang N-HL (1991) Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications. Sep Purif Rev 20:49–106. https://doi.org/10.1080/03602549108021408

    Article  CAS  Google Scholar 

  23. Kågedal L (1998) Immobilized metal ion affinity chromatography. In: Janson J-C, Ryden L (eds) Protein purification: principles, high-resolution methods, and applications, 2nd edn. Wiley-VCH, New York

    Google Scholar 

Download references

Acknowledgments

E.G.C. thanks IKY Scholarship Programs that is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers” (MIS-5001552), implemented by the State Scholarships Foundation (IKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Labrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chronopoulou, E.G., Varotsou, C., Georgakis, N., Premetis, G., Ioannou, E., Labrou, N.E. (2020). Ligand Fishing: An Approach for the Discovery of Inhibitors from Complex Biological Mixtures. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics