Skip to main content

Ecotoxicological QSARs of Personal Care Products and Biocides

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The personal care products (PCPs) constitute various nonmedical products intended only for the application on the body surface and are not used to treat internal body problems like infections, etc. With a continuous change in culture and lifestyle in the society, the consumption of PCPs has increased several fold. In contrast, biocides are any chemical substances administered individually or in mixture with the intention of “destroying, deterring, rendering harmless, preventing the action of, or otherwise exerting a controlling effect on, any harmful organism by any means other than mere physical or mechanical action.” The exponential rises in domestic application of PCPs and biocides have rendered them to be potential causes of environmental pollution. Their continuous detection in river bodies mainly due to improper treatment and uncontrolled release via sewage treatment plants has proven to be a leading cause of harm to ecological species. Some of them have been proved to have potential to become contaminants of emerging concern (CEC). Insufficient ecotoxicological data of PCPs for their environmental behavior and ecotoxicity have rendered Scientific Committee on Consumer Safety (SCCS) administered by the Directorate-General for Health and Consumer Protection of the European Commission to release guidelines pertaining to safer use and risk associated with it. On the other hand, Biocidal Products Regulation (BPR) EU 528/2012 was enacted to improve functioning of the biocide market and to ensure a high level of protection of human and animal health and the environment. In silico tools such as quantitative structure-activity relationship (QSAR) and read-across can be employed using existing information to rapidly identify the potentially most toxic and hazardous toxic PCPs/biocides and prioritize the most environmentally hazardous ones. QSAR is widely used to obtain predictions of known/untested or not yet synthesized chemicals in order to prioritize them as various toxic classes of potential hazard causing ingredients. The present chapter enlists the information related to impact and occurrence of PCPs/biocides along with their persistence, environmental fate, risk assessment, and risk management. Additionally, a special emphasis is given on in silico tools such as QSAR which can be employed in prediction of environmental fate of personal care products and biocides mainly related to the ecotoxicity to aquatic species. Finally, a detailed report is prepared on endpoints, ecotoxicity databases, and expert systems frequently used for ecotoxicity predictions of personal care products and biocides with the aim to justify the development and implementation of in silico tools in early risk assessment and reduction of animal experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De P, Roy K (2018) Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors. SAR QSAR Environ Res 29:319–337

    CAS  PubMed  Google Scholar 

  2. Kar S, SepÃlveda MS, Roy K, Leszczynski J (2017) Endocrine-disrupting activity of per-and polyfluoroalkyl substances: exploring combined approaches of ligand and structure based modeling. Chemosphere 184:514–523

    Article  CAS  PubMed  Google Scholar 

  3. E. Union (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off J Eur Union L 167:1–116

    Google Scholar 

  4. Devillers J, Mombelli E, Samsera R (2011) Structural alerts for estimating the carcinogenicity of pesticides and biocides. SAR QSAR Environ Res 22:89–106

    Article  CAS  PubMed  Google Scholar 

  5. Dich J, Zahm SH, Hanberg A, Adami H-O (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  PubMed  Google Scholar 

  6. Available at https://www.alliedmarketresearch.com/cosmetics-market (2019)

  7. Available at https://www.alliedmarketresearch.com/biocides-market (2019)

  8. Khan K, Roy K, Benfenati E (2019) Ecotoxicological QSAR modeling of endocrine disruptor chemicals. J Hazard Mater 369:707–718

    Article  CAS  PubMed  Google Scholar 

  9. Khan PM, Roy K, Benfenati E (2019) Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 224:470–479

    Article  CAS  PubMed  Google Scholar 

  10. Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotox Environ Safe 168:287–297

    Article  CAS  Google Scholar 

  11. Hossain KA, Roy K (2018) Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Ecotox Environ Safe 166:92–101

    Article  CAS  Google Scholar 

  12. Khan K, Kar S, Sanderson H, Roy K, Leszczynski J (2019) Ecotoxicological modeling, ranking and prioritization of pharmaceuticals using QSTR and QSTTR approaches: application of 2D and fragment based descriptors. Mol Inform, 38, article 1800078, https://doi.org/10.1002/minf.201800078

    Article  CAS  Google Scholar 

  13. Gramatica P, Cassani S, Sangion A (2016) Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chem 18:4393–4406

    Article  CAS  Google Scholar 

  14. Khan K, Roy K (2017) Ecotoxicological modelling of cosmetics for aquatic organisms: a QSTR approach. SAR QSAR Environ Res 28:567–594

    Article  CAS  PubMed  Google Scholar 

  15. Mayo-Bean K, Moran K, Meylan B, Ranslow P (2012) Methodology document for the ECOlogical Structure-Activity Relationship model (ECOSAR) class program. US-EPA, Washington DC

    Google Scholar 

  16. Khan K, Baderna D, Cappelli C, Toma C, Lombardo A, Roy K, Benfenati E (2019) Ecotoxicological QSAR modeling of organic compounds against fish: application of fragment based descriptors in feature analysis. Aquat Toxicol 212:162

    Article  CAS  PubMed  Google Scholar 

  17. ECHA (2019) https://echa.europa.eu/-/poison-centres-guidance

  18. European commission Cosmetic ingredient database (2019) Available at https://ec.europa.eu/growth/sectors/cosmetics/cosing_en. Access on March-May 2019

  19. Di Nica V, Gallet J, Villa S, Mezzanotte V (2017) Toxicity of quaternary ammonium compounds (QACs) as single compounds and mixtures to aquatic non-target microorganisms: experimental data and predictive models. Ecotox Environ Safe 142:567–577

    Article  CAS  Google Scholar 

  20. Yamagishi T, Miyazaki T, Horii S, Akiyama K (1983) Synthetic musk residues in biota and water from Tama River and Tokyo Bay (Japan). Arch Environ Contam Toxicol 12:83–89

    Article  CAS  PubMed  Google Scholar 

  21. ICID, ICID International Cosmetic Ingredient Dictionary and Handbook (2008) 12th Edition and 2014 18th edition, published by The Cosmetic, Toiletry, and Fragrance Association, Washington, DC

    Google Scholar 

  22. Cui Y, Teo S, Leong W, Chai C (2014) Searching for “environmentally-benign” antifouling biocides. Int J Mol Sci 15:9255–9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellis JB (2006) Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ Pollut 144:184–189

    Article  CAS  PubMed  Google Scholar 

  24. Vimalkumar K, Arun E, Krishna-Kumar S, Poopal RK, Nikhil NP, Subramanian A, Babu-Rajendran R (2018) Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Sci Total Environ 625:1351–1360

    Article  CAS  PubMed  Google Scholar 

  25. Govindarajalu K (2003) Industrial effluent and health status: a case study of Noyyal river basin. In: Proceedings of the third international conference on environment and health. Citeseer, Chennai, pp 15–17

    Google Scholar 

  26. Holah J, Taylor J, Dawson D, Hall K (2002) Biocide use in the food industry and the disinfectant resistance of persistent strains of listeria monocytogenes and Escherichia coli. J Appl Microbiol 92:111S–120S

    Article  PubMed  Google Scholar 

  27. McLaughlin JK, Lipworth L, Tarone RE (2003) Suicide among women with cosmetic breast implants: a review of the epidemiologic evidence. J Long-Term Eff Med Implants 13:6

    Article  Google Scholar 

  28. Miller LG, Quan C, Shay A, Mostafaie K, Bharadwa K, Tan N, Matayoshi K, Cronin J, Tan J, Tagudar G (2007) A prospective investigation of outcomes after hospital discharge for endemic, community-acquired methicillin-resistant and-susceptible Staphylococcus aureus skin infection. Clin Infect Dis 44:483–492

    Article  PubMed  Google Scholar 

  29. sccs (2019) https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions_en

  30. ECSID, European commission Cosmetic ingredient database 2019 (2019) Available at https://ec.europa.eu/growth/sectors/cosmetics/cosing_en. Access on March-May 2019

  31. Roy K, Kar S (2016) In Silico models for ecotoxicity of pharmaceuticals, in. Springer, In Silico methods for predicting drug toxicity, pp 237–304

    Google Scholar 

  32. Krewski D, Westphal M, Andersen ME, Paoli GM, Chiu WA, Al-Zoughool M, Croteau MC, Burgoon LD, Cote I (2014) A framework for the next generation of risk science. Environ Health Perspect 122:796–805

    Article  PubMed  PubMed Central  Google Scholar 

  33. Presidential/Congressional Commission on Risk Assessment Risk Management (1997) Risk assessment and risk management in regulatory decision-making. Final Report. Vol. 2.Washington, DC:PCRARM. Available: http://www.riskworld.com. Accessed 4 Mar 2019

  34. Kar S, Roy K, Leszczynski J (2018) Impact of pharmaceuticals on the environment: risk assessment using QSAR modeling approach. In: Computational toxicology. Springer, NY, pp 395–443

    Google Scholar 

  35. EFSA, European Food Safety Authority (EFSA) (2015) Website accessed in 2015. https://www.efsa.europa.eu

  36. Kummerer K (2007) Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem 9:899–907

    Article  CAS  Google Scholar 

  37. SCOPUS (2019) Available at https://www.scopus.com/search/form.uri?display=basic

  38. Papa E, Sangion A, Arnot JA, Gramatica P (2018) Development of human biotransformation QSARs and application for PBT assessment refinement. Food Chem Toxicol 112:535–543

    Article  CAS  PubMed  Google Scholar 

  39. Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474

    Article  CAS  PubMed  Google Scholar 

  40. Gramatica P, Papa E, Sangion A (2018) QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals. Environ Sci Process Impacts 20:38–47

    Article  CAS  PubMed  Google Scholar 

  41. Önlü S, Saçan MT (2017) An in silico approach to cytotoxicity of pharmaceuticals and personal care products on the rainbow trout liver cell line RTL-W1. Environ Toxicol Chem 36:1162–1169

    Article  PubMed  CAS  Google Scholar 

  42. Agarwal M, Frank MI (2019) Spartan: a software tool for parallelization bottleneck analysis, in: 2009 ICSE workshop on multicore software engineering. IEEE 2009:56–63

    Google Scholar 

  43. Mauri A, Consonni V, Pavan M, Todeschini R, software D (2006) An easy approach to molecular descriptor calculations. Match 56:237–248

    CAS  Google Scholar 

  44. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    Article  CAS  Google Scholar 

  45. Cassani S, Gramatica P (2015) Identification of potential PBT behavior of personal care products by structural approaches. Sustainable Chem Pharm 1:19–27

    Article  CAS  Google Scholar 

  46. De García SAO, Pinto GP, García-Encina PA, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23:1517–1533

    Article  CAS  Google Scholar 

  47. Toropova AP, Toropov AA (2018) Use of the index of ideality of correlation to improve models of eco-toxicity. Environ Sci Pollut Res 25:31771–31775

    Article  Google Scholar 

  48. Matthews EJ (2019) In silico scaling and prioritization of chemical disposition and chemical toxicity of 15,145 organic chemicals. Comput Toxicol 9:100–132

    Article  Google Scholar 

  49. Percepta, from Advanced Chemistry Development (ACD) Labs (2018) http://www.acdlabs.com/products/percepta/

  50. Center Watch, website accessed in 2015. www.centerwatch.com/drug-information/fda-approvals/

  51. Drugs@FDA, website accessed in 2015. https://www.accessdata.fda.gov/scripts/cder/daf/

  52. The Good Scents Company (2018) http://www.thegoodscentscompany.com

  53. CFSAN Thesaurus, accessed February 2013. http://www.fda.gov/Food/FoodScienceResearch/ToolsMaterials/ucm181420.htm

  54. EAFUS List. Everything added to food in the United States. www.accessdata.fda.gov/scripts/fcn/fcnnavigation.cfm?rpt=eafuslisting

  55. Health Canada, website accessed in 2015. http://hc-sc.gc.ca/fn-an/securit/addit/list/11-preserv-conserv-eng.php

  56. European Food Safety Authority (EFSA), website accessed in 2015. https://www.efsa.europa.eu

  57. FDA GRAS. GRAS notice inventory (2018) https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm

  58. Fragrance Products Information Network. http://pw1.netcom.com/~bcb56/fpin.htm, http://www.fpinva.org/text/1a5d908-130.html (web link no longer available)

  59. Environmental Protection Agency (EPA) list of fragrance chemicals in household products (15/49 FPIN HOME PAGE OVERVIEW HEALTH FRAGRANCEMATERIALS. Accessed 23 Apr 2013

    Google Scholar 

  60. FPIN_LP: Common fragrance Chemicals in Laundry Products & cleaners, the FPINVA fragrances were compiled by Betty Bridges (RN, 08/2006, http://www.fpinva.org/text/1a5d908-120.html) from Aldrich’s Flavors and Fragrances Catalog

  61. GIVAUDAN & IFF fragrance manufactures. https://www.givaudan.com/, http://www.iff.com/

  62. ICID International Cosmetic Ingredient Dictionary and Handbook, 2008 12thEdition and 2014 18th Edition, published by The Cosmetic, Toiletry, and Fragrance Association, Washington, DC

    Google Scholar 

  63. Hair dyes. www.accord.asn.au

  64. Arvidson KB, Chanderbhan R, Muldoon-Jacobs K, Mayer J, Ogungbesan A (2010) Regulatory use of computational toxicology tools and databases at the United States Food and Drug Administration’s Office of Food Additive Safety. Expert Opin Drug MetabToxicol 6:793–796

    Article  CAS  Google Scholar 

  65. Color of art database, the color of art pigment database, an artist reference. Accessed in 2013. http://www.artoscreation.com/colorindes.index.html

  66. Ink Dystuffs. Accessed in 2012. http://www.trader-ina.com/Chemicals/Dyestuffs/Ink-Dyestuffs_3.html

  67. Stainsfile Dye Index. Accessed in 2013. http://stainsfile.info/StainsFile/dyes/dyes.htm

  68. Batke M, Gütlein M, Partosch F, Gundert-Remy U, Helma C, Kramer S, Maunz A, Seeland M, Bitsch A (2016) Innovative strategies to develop chemical categories using a combination of structural and toxicological properties. Front Pharmacol 7:321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bitsch A, Jacobi S, Melber C, Wahnschaffe U, Simetska N, Mangelsdorf I (2006) REPDOSE: a database on repeated dose toxicity studies of commercial chemicals—a multifunctional tool. Regul Toxicol Pharmacol 46:202–210

    Article  CAS  PubMed  Google Scholar 

  70. Barabair F, Olsson H, Sokull-Klütgen B (2009) European List of notified chemical substances-ELINCS. JRC Scientific and Technical Reports, Brussels

    Google Scholar 

  71. A free web service tool. Accessible at http://mlc-reach.informatik.uni-mainz.de

  72. Verma RP, Matthews EJ (2015) Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential. Regul Toxicol Pharmacol 71:318–330

    Article  CAS  PubMed  Google Scholar 

  73. Khan K, Kar S, Sanderson H, Roy K, Leszczynski J (2017) Ecotoxicological assessment of pharmaceuticals using computational toxicology approaches: QSTR and interspecies QTTR modeling. In: Proceedings of MOL2NET 2017, international conference on multidisciplinary sciences, 3rd edn. MDPI AG, p 1

    Google Scholar 

  74. Hisaki T, née Kaneko MA, Yamaguchi M, Sasa H, Kouzuki H (2015) Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients. J Toxicol Sci 40:163–180

    Article  CAS  PubMed  Google Scholar 

  75. Enslein K, Gombar VK (1997) TOPKAT 5.0 and modulation of toxicity. Mutat Res-fund Mol M 379:S14–S14

    Article  Google Scholar 

  76. Plošnik A, Zupan J, Vračko M (2015) Evaluation of toxic endpoints for a set of cosmetic ingredients with CAESAR models. Chemosphere 120:492–499

    Article  PubMed  CAS  Google Scholar 

  77. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometr Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  78. Development Core Team R (2015) R: A language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Available online at 〈http://www.R-project.org/

  79. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  80. Jentzsch F, Olsson O, Westphal J, Reich M, Leder C, Kümmerer K (2016) Photodegradation of the UV filter ethylhexyl methoxycinnamate under ultraviolet light: identification and in silico assessment of photo-transformation products in the context of grey water reuse. Sci Total Environ 572:1092–1100

    Article  CAS  PubMed  Google Scholar 

  81. Chakravarti SK, Saiakhov RD, Klopman G (2012) Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model 52:2609–2618

    Article  CAS  PubMed  Google Scholar 

  82. Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z (2015) Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 135:182–188

    Article  CAS  PubMed  Google Scholar 

  83. Kar S, Das RN, Roy K, Leszczynski J (2016) Can toxicity for different species be correlated?: the concept and emerging applications of interspecies quantitative structure-toxicity relationship (i-QSTR) modeling. IJQSPR 1:23–51

    Google Scholar 

  84. Papa E, Luini M, Gramatica P (2009) Quantitative structure–activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents. SAR QSAR Environ Res 20:767–779

    Article  CAS  PubMed  Google Scholar 

  85. De Vaugelade S, Nicol E, Vujovic S, Bourcier S, Pirnay S, Bouchonnet S (2018) Ultraviolet–visible phototransformation of dehydroacetic acid–structural characterization of photoproducts and global ecotoxicity. Rapid Commun Mass Spectrom 32:862–870

    Article  PubMed  CAS  Google Scholar 

  86. Campbell JL, Yoon M, Clewell HJ (2015) A case study on quantitative in vitro to in vivo extrapolation for environmental esters: methyl-, propyl- and butylparaben. Toxicology 332:67–76

    Article  CAS  PubMed  Google Scholar 

  87. De Vaugelade S, Nicol E, Vujovic S, Bourcier S, Pirnay S, Bouchonnet S (2017) UV-vis degradation of α--tocopherol in a model system and in a cosmetic emulsion-structural elucidation of photoproducts and toxicological consequences. J Chromatogr A 1517:126–133

    Article  PubMed  CAS  Google Scholar 

  88. Canipa SJ, Chilton ML, Hemingway R, Macmillan DS, Myden A, Plante JP, Tennant RE, Vessey JD, Steger-Hartmann T, Gould J (2017) A quantitative in silico model for predicting skin sensitization using a nearest neighbours approach within expert-derived structure-activity alert spaces. J Appl Toxicol 37:985–995

    Article  CAS  PubMed  Google Scholar 

  89. Khan K, Khan PM, Lavado G, Valsecchi C, Pasqualini J, Baderna D, Marzo M, Lombardo A, Roy K, Benfenati E (2019) QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere 229:8–17. https://doi.org/10.1016/j.chemosphere.2019.04.204

    Article  CAS  PubMed  Google Scholar 

  90. Rauert C, Friesen A, Hermann G, Johncke U, Kehrer A, Neumann M, Prutz I, Schonfeld J, Wiemann A, Willhaus K (2014) Proposal for a harmonised PBT identification across different regulatory frameworks. Environ Sci Eur 26:9

    Article  CAS  Google Scholar 

  91. Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, Garcia-Franco M, Guinea J, Kluver N, Schirmer K, Tanneberger K (2013) A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol 67:506–530

    Article  PubMed  Google Scholar 

  92. Hernandez-Altamirano R, Mena-Cervantes VY, Perez-Miranda S, Fernandez FJ, Flores-Sandoval CA, Barba V, Beltran HI, Zamudio-Rivera LS (2010) Molecular design and QSAR study of low acute toxicity biocides with 4, 4â€2-dimorpholyl-methane core obtained by microwave-assisted synthesis. Green Chem 12:1036–1048

    Article  CAS  Google Scholar 

  93. Neuwoehner J, Junghans M, Koller M, Escher BI (2008) QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae. Aquat Toxicol 90:8–18

    Article  CAS  PubMed  Google Scholar 

  94. Van Leeuwen CJ, Maas-Diepeveen JL, Niebeek G, Vergouw WHA, Griffioen PS, Luijken MW (1985) Aquatic toxicological aspects of dithiocarbamates and related compounds. I. Short-term toxicity tests. Aquat Toxicol 7:145–164

    Article  Google Scholar 

  95. Meylan WM (2000) SRC KOWWIN Software SRC-LOGKOW Version 1.66, Syracuse Research Corporation, USA

    Google Scholar 

  96. Yuval A, Eran F, Janin W, Oliver O, Yael D (2017) Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci Total Environ 601:397–404

    Article  PubMed  CAS  Google Scholar 

  97. Roy K, Ambure P, Kar S (2018) How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? ACS Omega 3:11392–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

KK thanks Indian Council of Medical Research, New Delhi for financial support in the form of a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, K., Sanderson, H., Roy, K. (2020). Ecotoxicological QSARs of Personal Care Products and Biocides. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics