Skip to main content

DNA-Mediated Liposome Fusion Observed by Fluorescence Spectrometry

  • Protocol
  • First Online:
Nucleic Acid Detection and Structural Investigations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2063))

Abstract

DNA-programmed and controlled fusion of lipid membranes have recently been optimized to reliably mix the contents between two populations of liposomes, each functionalized with complementary lipidated DNA (LiNA) oligomer. In this chapter we describe a procedure for DNA-controlled fusion of liposomes mediated by LiNAs that are designed to force bilayers into close proximity. Using a self-quenching fluorescent dye (Sulforhodamine B) to monitor both the mixing of the internal volumes and leakage of the dye into the outer volume we measure the efficiency of content mixing in the bulk population, allowing for direct comparison between different LiNA designs. By generating samples for calibration corresponding to different amounts of content mixing, the average number of fusion events per labeled liposome can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pick H, Alves AC, Vogel H (2018) Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 118:8598–8654. https://doi.org/10.1021/acs.chemrev.7b00777

    Article  CAS  PubMed  Google Scholar 

  2. Ma M, Bong D (2013) Controlled fusion of synthetic lipid membrane vesicles. Acc Chem Res 46:2988–2997. https://doi.org/10.1021/ar400065m

    Article  CAS  PubMed  Google Scholar 

  3. Marsden HR, Tomatsu I, Kros A (2011) Model systems for membrane fusion. Chem Soc Rev 40:1572–1585. https://doi.org/10.1039/c0cs00115e

    Article  CAS  PubMed  Google Scholar 

  4. Oude Blenke EE, van den Dikkenberg J, van Kolck B, Kros A, Mastrobattista E (2016) Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. Nanoscale 8:8955–8965. https://doi.org/10.1039/c6nr00711b

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RCL, Kros A (2016) Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes. ACS Cent Sci 2:621–630. https://doi.org/10.1021/acscentsci.6b00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L et al (2018) Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem Sci 9:5967–5975. https://doi.org/10.1039/C8SC00367J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Löffler PMG, Ries O, Rabe A, Okholm AH, Thomsen RP, Kjems J, Vogel S (2017) A DNA-Programmed Liposome Fusion Cascade. Angew Chem Int Ed 56:13228–13231. https://doi.org/10.1002/anie.201703243

    Article  CAS  Google Scholar 

  8. Fasshauer D, Otto H, Eliason WK, Jahn R, Brünger AT (1997) Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation. J Biol Chem 272:28036–28041. https://doi.org/10.1074/jbc.272.44.28036

    Article  CAS  PubMed  Google Scholar 

  9. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro thatmay correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  Google Scholar 

  10. Francois-Martin C, Rothman JE, Pincet F (2017) Low energy cost for optimal speed and control of membrane fusion. Proc Nat Acad Sci U S A 114:1238–1241. https://doi.org/10.1073/pnas.1621309114

    Article  CAS  Google Scholar 

  11. Marsden HR, Elbers NA, Bomans PHH, Sommerdijk NAJM, Kros A (2009) A Reduced SNARE Model for Membrane Fusion. Angew Chem Int Ed 48:2330–2333. https://doi.org/10.1002/anie.200804493

    Article  CAS  Google Scholar 

  12. Kashiwada A, Tsuboi M, Matsuda K (2011) Target-Selective One-Way Membrane Fusion System Based on a pH-Responsive Coiled Coil Assembly at the Interface of Liposomal Vesicles. Langmuir 27:1403–1408. https://doi.org/10.1021/la103908u

    Article  CAS  PubMed  Google Scholar 

  13. Stengel G, Zahn R, Höök F (2007) DNA-Induced Programmable Fusion of Phospholipid Vesicles. J Am Chem Soc 129:9584–9585. https://doi.org/10.1021/ja073200k

    Article  CAS  PubMed  Google Scholar 

  14. Ries O, Löffler PMG, Vogel S (2015) Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes. Org Biomol Chem 13:9673–9680. https://doi.org/10.1039/c5ob01207d

    Article  CAS  PubMed  Google Scholar 

  15. Meyenberg K, Lygina AS, van den Bogaart G, Jahn R, Diederichsen U (2011) SNARE derived peptide mimic inducing membrane fusion. Chem Commun 47:9405–9407. https://doi.org/10.1039/c1cc12879e

    Article  CAS  Google Scholar 

  16. Rabe A, Loffler PMG, Ries O, Vogel S (2017) Programmable fusion of liposomes mediated by lipidated PNA. Chem Commun 53:11921–11924. https://doi.org/10.1039/C7CC06058K

    Article  CAS  Google Scholar 

  17. Vogel S et al (2001) Moenomycin analogues with long-chain amine lipid parts from reductive aminations. Tetrahedron 57:4147–4160. https://doi.org/10.1016/S0040-4020(01)00306-4

    Article  CAS  Google Scholar 

  18. Vogel S, Stembera K, Hennig L, Findeisen M, Giesa S, Welzel P, Lampilas M (2001) Moenomycin analogues with modified lipid side chains from indium-mediated Barbier-type reactions. Tetrahedron 57:4139–4146. https://doi.org/10.1016/S0040-4020(01)00301-5

    Article  CAS  Google Scholar 

  19. Miglietta G, Picco R, Vogel S, Wengel J, Xodo LE (2018) MicroRNA therapeutics: design of single-stranded miR-216b mimics to target KRAS in pancreatic cancer cells AU - Ferino. Annalisa RNA Biology 15:1273–1285. https://doi.org/10.1080/15476286.2018.1526536

    Article  Google Scholar 

  20. Cogoi S, Jakobsen U, Pedersen EB, Vogel S, Xodo LE (2016) Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles: delivery and bioactivity in pancreatic cancer cells. Sci Rep 6:38468. https://doi.org/10.1038/srep38468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rohr K, Vogel S (2006) Polyaza crown ethers as non-nucleosidic building blocks in DNA conjugates: synthesis and remarkable stabilization of dsDNA. Chembiochem 7:463–470. https://doi.org/10.1002/cbic.200500392

    Article  CAS  PubMed  Google Scholar 

  22. Jakobsen U, Simonsen AC, Vogel S (2008) DNA-Controlled Assembly of Soft Nanoparticles. J Am Chem Soc 130:10462–10463. https://doi.org/10.1021/ja8030054

    Article  CAS  PubMed  Google Scholar 

  23. Zhang G, Farooqui F, Kinstler O, Letsinger RL (1996) Informational liposomes: Complexes derived from cholesteryl-conjugated oligonucleotides and liposomes. Tet Lett 37:6243–6246. https://doi.org/10.1016/0040-4039(96)01381-0

    Article  CAS  Google Scholar 

  24. Bleczinski CF, Richert C (1999) Steroid−DNA Interactions Increasing Stability, Sequence-Selectivity, DNA/RNA Discrimination, and Hypochromicity of Oligonucleotide Duplexes. J of the Am Chem Soc 121:10889–10894. https://doi.org/10.1021/ja9920415

    Article  CAS  Google Scholar 

  25. Pfeiffer I, Höök F (2004) Bivalent cholesterol-based coupling of oligonucletides to lipid membrane assemblies. J Am Chem Soc 126:10224–10225. https://doi.org/10.1021/ja048514b

    Article  CAS  PubMed  Google Scholar 

  26. Schade M, Berti D, Huster D, Herrmann A, Arbuzova A (2014) Lipophilic nucleic acids — A flexible construction kit for organization and functionalization of surfaces. Adv Colloid Interf Sci 208:235–251. https://doi.org/10.1016/j.cis.2014.02.019

    Article  CAS  Google Scholar 

  27. Hadorn M, Boenzli E, Sorensen KT, De Lucrezia D, Hanczyc MM, Yomo T (2013) Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. Langmuir 29:15309–15319. https://doi.org/10.1021/la402621r

    Article  CAS  PubMed  Google Scholar 

  28. Brodersen N et al (2007) Nucleosides with 5′-fixed lipid groups – synthesis and anchoring in lipid membranes. Eur J Org Chem 2007:6060–6069. https://doi.org/10.1002/ejoc.200700521

    Article  CAS  Google Scholar 

  29. Gissot A, Camplo M, Grinstaff MW, Barthelemy P (2008) Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org Biomol Chem 6:1324–1333. https://doi.org/10.1039/B719280K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parolini L, Mognetti BM, Kotar J, Eiser E, Cicuta P, Di Michele L (2015) Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes. Nat Commun 6:5948. https://doi.org/10.1038/ncomms6948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jakobsen U, Vogel S (2013) Assembly of Liposomes Controlled by Triple Helix Formation. Bioconjug Chem 24:1485–1495. https://doi.org/10.1021/bc300690m

    Article  CAS  PubMed  Google Scholar 

  32. Jakobsen U, Vogel S (2009) DNA-Controlled Assembly of Liposomes in Diagnostics. Methods Enzymol 464:233–248. https://doi.org/10.1016/S0076-6879(09)64012-X

    Article  CAS  PubMed  Google Scholar 

  33. Bolinger PY, Stamou D, Vogel H (2008) An integrated self-assembled nanofluidic system for controlled biological chemistries. Angew Chem Int Ed Engl 47:5544–5549. https://doi.org/10.1002/anie.200801606

    Article  CAS  PubMed  Google Scholar 

  34. Jakobsen U, Vogel S (2016) Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly. Org Biomol Chem 14:6985–6995. https://doi.org/10.1039/c6ob01120a

    Article  CAS  PubMed  Google Scholar 

  35. Ries O, Löffler PMG, Rabe A, Malavan JJ, Vogel S (2017) Efficient liposome fusion mediated by lipid-nucleic acid conjugates. Org Biomol Chem 15:8936–8945. https://doi.org/10.1039/C7OB01939D

    Article  CAS  PubMed  Google Scholar 

  36. Meng Z et al (2017) Efficient fusion of liposomes by nucleobase quadruple-anchored DNA. Chem Eur J 23:9391–9396. https://doi.org/10.1002/chem.201701379

    Article  CAS  PubMed  Google Scholar 

  37. Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82:882–895. https://doi.org/10.1016/S0006-3495(02)75450-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogel S (2015) DNA-Controlled Assembly of Soft Nanoparticles. In: Stulz E, Clever H (eds) DNA in Supramolecular Chemistry and Nanotechnology. John Wiley & Sons, Ltd., Chichester, pp 397–409. https://doi.org/10.1002/9781118696880.ch5.4

    Chapter  Google Scholar 

  39. Evans E (1991) Entropy-Driven Tension in Vesicle Membranes and Unbinding of Adherent Vesicles. Langmuir 7:1900–1908

    Article  CAS  Google Scholar 

  40. Stengel G, Simonsson L, Campbell RA, Höök F (2008) Determinants for Membrane Fusion Induced by Cholesterol-Modified DNA Zippers. J Phys Chem B 112:8264–8274. https://doi.org/10.1021/jp802005b

    Article  CAS  PubMed  Google Scholar 

  41. Lygina AS, Meyenberg K, Jahn R, Diederichsen U (2011) Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew Chem Int Ed 50:8597–8601. https://doi.org/10.1002/anie.201101951

    Article  CAS  Google Scholar 

  42. Zheng TT, Voskuhl J, Versluis F, Zope HR, Tomatsu I, Marsden HR, Kros A (2013) Controlling the rate of coiled coil driven membrane fusion. Chem Commun 49:3649–3651. https://doi.org/10.1039/c3cc38926j

    Article  CAS  Google Scholar 

  43. Kyoung M et al (2011) In vitro system capable of differentiating fast Ca2+−triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Nat Acad Sci U S A 108:E304–E313. https://doi.org/10.1073/pnas.1107900108

    Article  Google Scholar 

  44. Versluis F, Voskuhl J, van Kolck B, Zope H, Bremmer M, Albregtse T, Kros A (2013) In Situ Modification of Plain Liposomes with Lipidated Coiled Coil Forming Peptides Induces Membrane Fusion. J Am Chem Soc 135:8057–8062. https://doi.org/10.1021/ja4031227

    Article  CAS  PubMed  Google Scholar 

  45. Daudey GA, Zope HR, Voskuhl J, Kros A, Boyle AL (2017) Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Langmuir 33:12443–12452. https://doi.org/10.1021/acs.langmuir.7b02931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Itoh YH, Itoh T, Kaneko H (1986) Modified Bartlett Assay for Microscale Lipid Phosphorus Analysis. Anal Biochem 154:200–204

    Article  CAS  Google Scholar 

  47. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nuc Ac Res 32:e13–e13. https://doi.org/10.1093/nar/gnh015

    Article  Google Scholar 

  48. Orsi M, Essex JW (2013) Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: insights from coarse-grain molecular dynamics simulations. Faraday Discuss 161:249–272. https://doi.org/10.1039/C2FD20110K

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alexander Rabe for his contributions to method development and verification. The authors gratefully acknowledge funding by the Biomolecular Nanoscale Engineering Center (BioNEC), a Centre of Excellence funded by The VILLUM Foundation, grant no. VKR022710.

Conflicts of interest: The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Löffler, P.M.G., Ries, O., Vogel, S. (2020). DNA-Mediated Liposome Fusion Observed by Fluorescence Spectrometry. In: Astakhova, K., Bukhari, S. (eds) Nucleic Acid Detection and Structural Investigations. Methods in Molecular Biology, vol 2063. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0138-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0138-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0137-2

  • Online ISBN: 978-1-0716-0138-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics