Skip to main content

Analysis of Lipids and Polycyclic Aromatic Hydrocarbons as Indicators of Past and Present (Micro)Biological Activity

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Analysis of lipids and hydrocarbons is performed frequently in recent and ancient plant tissues, soils, sediments, peat deposits, oil, rocks, anthropogenic artifacts (archeological samples), and other materials to trace the contribution of different biological and anthropogenic sources of organic matter as well as environmental changes and the fate of organic matter like degradation. The approaches for the analysis of lipids and hydrocarbons strongly vary from traditional methodologies like thin-layer chromatography to universal approaches like pyrolysis, whereas the preparative separation of lipid fractions based on their polarity enables gas-chromatographic analyses of single fractions and compound-specific analysis of stable (2H/1H, 13C/12C) and radioactive (14C) isotope compositions. Often, lipid extraction operationally defines a subfraction of total lipids. On the one hand, free extractable lipids are obtained by extraction with organic solvents, whereas on the other hand, total samples or extraction residues are extracted for more polar lipid fractions using highly polar organic solvents and water, to release bound lipids. Procedures for extraction of free extractable lipids are diverse and mainly defined by the target of research and availability of instrumentation. In the current protocol, state-of-the-art techniques for the investigation of free extractable lipids in various materials are explained, which can be applied even in laboratory environments with limited technical equipment. The protocols cover sample preparation, extraction, purification, analysis, as well as a brief overview of the data evaluation using lipid molecular proxies and compound-specific isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liebig J, Merck E, Mohr F (1837) Das aetherische Oel der Getraide. Ann Pharmacother 24:248–251

    Google Scholar 

  2. Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275:1–16

    Article  CAS  Google Scholar 

  3. Eglinton G et al (1962) Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1:89–102

    Article  CAS  Google Scholar 

  4. van Mourik JM, Jansen B (2013) The added value of biomarker analysis in palaeopedology; reconstruction of the vegetation during stable periods in a polycyclic driftsand sequence in SE-Netherlands. Quat Int 306:14–23

    Article  Google Scholar 

  5. Jansen B et al (2008) Characteristic straight-chain lipid ratios as a quick method to assess past forest-páramo transitions in the Ecuadorian Andes. Palaeogeogr Palaeoclimatol Palaeoecol 262:129–139

    Article  Google Scholar 

  6. Huang Y et al (1996) Isotope and molecular evidence for the diverse origins of carboxylic acids in leaf fossils and sediments from the Miocene Lake Clarkia deposit, Idaho, U.S.A. Org Geochem 24:289–299

    Article  CAS  Google Scholar 

  7. Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179

    Article  CAS  Google Scholar 

  8. Schwark L, Zink K, Lechterbeck J (2002) Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30:463–466

    Article  CAS  Google Scholar 

  9. Zheng Y et al (2007) Lipid biomarkers in the Zoigê-Hongyuan peat deposit: indicators of Holocene climate changes in West China. Org Geochem 38:1927–1940

    Article  CAS  Google Scholar 

  10. Zink K et al (2001) Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters. Geochim Cosmochim Acta 65:253–265

    Article  CAS  Google Scholar 

  11. Grice K et al (2003) Structural and isotopic analysis of kerogens in sediments rich in free sulfurised Botryococcus braunii biomarkers. Org Geochem 34:471–482

    Article  CAS  Google Scholar 

  12. Schouten S et al (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol 73:6181–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwark L, Empt P (2006) Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 240:225–236

    Article  Google Scholar 

  14. Yunker MB et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  15. Eckmeier E, Wiesenberg GLB (2009) Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. J Archaeol Sci 36:1590–1596

    Article  Google Scholar 

  16. Leythaeuser D, Schwark L, Keuser C (2000) Geological conditions and geochemical effects of secondary petroleum migration and accumulation. Mar Pet Geol 17:857–859

    Article  CAS  Google Scholar 

  17. Hallmann COE et al (2007) Temporal resolution of an oil charging history – a case study of residual oil benzocarbazoles from the Gidgealpa Field. Org Geochem 38:1516–1536

    Article  CAS  Google Scholar 

  18. Weijers JWH et al (2010) Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeoscience 7:2959–2973

    Article  CAS  Google Scholar 

  19. Wiesenberg GLB et al (2004) Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures. Org Geochem 35:1371–1393

    Article  CAS  Google Scholar 

  20. Sachse D, Radke J, Gleixner G (2004) Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta 68:4877–4889

    Article  CAS  Google Scholar 

  21. Jambu P et al (1991) Incorporation of natural hydrocarbons from plant residues into an hydromorphic humic podzol following afforestation and fertilization. J Soil Sci 42:629–636

    Article  CAS  Google Scholar 

  22. Cranwell PA (1991) Paleolimnological studies using sequential lipid extraction from recent lacustrine sediment – recognition of source organisms from biomarkers. Hydrobiology 214:293–303

    Article  CAS  Google Scholar 

  23. Herbin GA, Robins PA (1968) Studies on plant cuticular waxes –I. The chemotaxonomy of alkanes and alkenes of genus Aloe (Liliaceae). Phytochemistry 7:239–255

    Article  CAS  Google Scholar 

  24. Collister JW et al (1992) An isotopic biogeochemical study of the Green River oil shale. Org Geochem 19:265–276

    Article  CAS  PubMed  Google Scholar 

  25. Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  26. Beyer L (1996) Soil organic matter composition of spodic horizons in Podzols of the Northwest German Lower Plain. Sci Total Environ 181:167–180

    Article  CAS  Google Scholar 

  27. Wiesenberg GLB, Schwark L, Schmidt MWI (2004) Improved automated extraction and separation procedure for soil lipid analyses. Eur J Soil Sci 55:349–356

    Article  CAS  Google Scholar 

  28. Baas M et al (2000) A comparative study of lipids in Sphagnum species. Org Geochem 31:535–541

    Article  CAS  Google Scholar 

  29. Gülz PG (1968) Normale und verzweigte Alkane in Chloroplastenpräparaten und Blättern von Antirrhinum majus. Phytochemistry 7:1009–1017

    Article  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  31. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge

    Google Scholar 

  32. van Bergen PF et al (1997) Organic geochemical studies of soils from the Rothamsted classical experiments – I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk wilderness. Org Geochem 26:117–135

    Article  Google Scholar 

  33. McCarthy RD, Duthie AH (1962) A rapid quantitative method for the separation of free fatty acids from other lipids. J Lipid Res 3:117–119

    CAS  Google Scholar 

  34. Radke M, Willsch H, Welte DH (1980) Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal Chem 52:406–411

    Article  CAS  Google Scholar 

  35. Bianchi G, Corbellini M (1977) Epicuticular wax of Triticum aestivum DEMAR 4. Phytochemistry 16:943–945

    Article  CAS  Google Scholar 

  36. Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luque de Castro MD, García-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  CAS  Google Scholar 

  38. Jansen B et al (2006) The applicability of accelerated solvent extraction (ASE) to extract lipid biomarkers from soils. Appl Geochem 21:1006–1015

    Article  CAS  Google Scholar 

  39. Lüniger G, Schwark L (2002) Characterisation of sedimentary organic matter by bulk and molecular geochemical proxies: an example from Oligocene maar-type Lake Enspel, Germany. Sediment Geol 148:275–288

    Article  Google Scholar 

  40. Shantha NC, Napolitano GE (1992) Gas chromatography of fatty acids. J Chromatogr A 624:37–51

    Article  CAS  Google Scholar 

  41. Wang Z, Yang C, Kelly-Hooper F, Hollebone BP, Peng X, Brown CE, Landriault M, Sun J, Yang Z (2009) Forensic differentiation of biogenic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. J Chromatogr A 1216:1174–1191

    Article  CAS  PubMed  Google Scholar 

  42. Wakeham SG, McNichol AP (2014) Transfer of organic carbon through marine water columns to sediments – insights from stable and radiocarbon isotopes of lipid biomarkers. Biogeoscience 11:6895–6914

    Article  Google Scholar 

  43. Maffei M (1996) Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochem Syst Ecol 24:53–64

    Article  CAS  Google Scholar 

  44. Volkman JK et al (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  CAS  Google Scholar 

  45. Lockheart MJ, van Bergen PF, Evershed RP (2000) Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA based on n-alkyl lipid distributions and principal component analyses. Org Geochem 31:1223–1246

    Article  CAS  Google Scholar 

  46. Rommerskirchen F et al (2006) Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem 37:1303–1332

    Article  CAS  Google Scholar 

  47. Harwood JL, Russell NJ (1984) Lipids in plants and microbes. Allen and Unwin, London

    Book  Google Scholar 

  48. Maffei M, Badino S, Bossi S (2004) Chemotaxonomic significance of leaf wax n-alkanes in the Pinales (Coniferales). J Biol Res 1:3–19

    CAS  Google Scholar 

  49. Wiesenberg GLB, Schwark L (2006) Carboxylic acid distribution patterns of temperate C3 and C4 crops. Org Geochem 37:1973–1982

    Article  CAS  Google Scholar 

  50. Vogts A et al (2009) Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org Geochem 40:1037–1054

    Article  CAS  Google Scholar 

  51. Sinninghe Damsté JS et al (2000) Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chem Commun 1683–1684

    Google Scholar 

  52. Ries-Kautt M, Albrecht P (1989) Hopane-derived triterpenoids in soils. Chem Geol 76:143–151

    Article  CAS  Google Scholar 

  53. Didyk BM et al (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  CAS  Google Scholar 

  54. Weijers JWH et al (2006) Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Org Geochem 37:1680–1693

    Article  CAS  Google Scholar 

  55. Garcin Y et al (2012) Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon. Geochim Cosmochim Acta 79:106–126

    Article  CAS  Google Scholar 

  56. Huang Y et al (2004) Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. J Paleolimnol 31:363–375

    Article  Google Scholar 

  57. Chikaraishi Y, Naraoka H (2007) δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Org Geochem 38:198–215

    Article  CAS  Google Scholar 

  58. Cayet C, Lichtfouse É (2001) δ13C of plant-derived n-alkanes in soil particle-size fractions. Org Geochem 32:253–258

    Article  CAS  Google Scholar 

  59. Lichtfouse É et al (1997) Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16-C18 n-alkanes in modern soils. Geochim Cosmochim Acta 61:1891–1898

    Article  CAS  Google Scholar 

  60. Rethemeyer J et al (2004) Complexity of soil organic matter: AMS 14C analysis of soil lipid fractions and individual compounds. Radiocarbon 46:465–473

    Article  CAS  Google Scholar 

  61. Bol R et al (1996) The 14C age and residence time of organic matter and its lipid constituents in a stagnohumic gley soil. Eur J Soil Sci 47:215–222

    Article  CAS  Google Scholar 

  62. Jenkins BM et al (1996) Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ Sci Technol 30:2462–2469

    Article  CAS  Google Scholar 

  63. Simoneit BRT, Elias VO (2000) Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Mar Chem 69:301–312

    Article  CAS  Google Scholar 

  64. Birk JJ et al (2012) Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography–mass spectrometry. J Chromatogr A 1242:1–10

    Article  CAS  PubMed  Google Scholar 

  65. Evershed RP (2008) Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50:895–924

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido L. B. Wiesenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Wiesenberg, G.L.B., Gocke, M.I. (2015). Analysis of Lipids and Polycyclic Aromatic Hydrocarbons as Indicators of Past and Present (Micro)Biological Activity. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_157

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_157

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52791-7

  • Online ISBN: 978-3-662-52793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics