Skip to main content

Effective Brain Connectivity from Intracranial EEG Recordings: Identification of Epileptogenic Zone in Human Focal Epilepsies

  • Protocol
  • First Online:
Modern Electroencephalographic Assessment Techniques

Part of the book series: Neuromethods ((NM,volume 91))

Abstract

In the context of focal and drug-resistant epilepsy, surgical resection of the epileptogenic zone (EZ) may be the only therapeutic option for reducing or suppressing seizures. The aim of epilepsy surgery is the exeresis of the EZ, which is assumed to be the cortical region responsible for the onset, early organization, and propagation of seizures. EZ represents the minimum amount of cortex that must be resected in order to achieve seizure freedom; therefore, the correct identification of its extent and organization is a crucial objective. Nevertheless, the rather high rate of failure in epilepsy surgery in extra-temporal epilepsies highlights that the precise identification of the EZ is still an unsolved problem and that more sophisticated methods of investigation are required.

In many patients, intracranial stereo-EEG recordings still represent the gold standard for the epilepsy surgery work-up, and, over the last 10 years, considerable efforts have been made to develop advanced signal analysis techniques able to improve the identification of the EZ. Since it is widely assumed that epileptic phenomena are associated with abnormal changes in brain synchronization mechanisms, particular attention has been paid to those methods aimed at quantifying and characterizing the interactions and causal relationships of neuronal populations, and initial evidence has shown that this can be a suitable approach to localizing the EZ.

The aim of this review is to provide an overview of the different intracranial EEG signal processing methods used to identify the EZ, with particular attention being given to the methods aimed at characterizing effective brain connectivity using intracranial EEG recordings. Then, we briefly present our studies of the connectivity pattern associated with a particular form of focal epilepsy (type II focal cortical dysplasia), based on multivariate autoregressive parametric models and measures derived from graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hauser WA (2007) Incidence and prevalence. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott-Raven Publishers, Philadelphia, pp 47–57

    Google Scholar 

  2. Beleza P (2009) Refractory epilepsy: a clinically oriented review. Eur Neurol 62(2):65–71

    Article  PubMed  Google Scholar 

  3. Munari C, Hoffmann D, Francione S et al (1994) Stereo-electroencephalography methodology: advantages and limits. Acta Neurol Scand Suppl 152:56–67

    Article  CAS  PubMed  Google Scholar 

  4. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  5. Bancaud J, Talairach J (1973) Methodology of stereo EEG exploration and surgical intervention in epilepsy. Rev Otoneuroophtalmol 45(4):315–328

    CAS  PubMed  Google Scholar 

  6. Cossu M, Chabardes S, Hoffmann D et al (2008) Presurgical evaluation of intractable epilepsy using stereo-electro-encephalography methodology: principles, technique and morbidity. Neurochirurgie 45(3):367–373

    Article  Google Scholar 

  7. Tellez-Zenteno JF, Dhar R, Wiebe S (2005) Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128:1188–1198

    Article  PubMed  Google Scholar 

  8. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3):219–227

    Article  PubMed  Google Scholar 

  9. Bartolomei F, Wendling F, Chauvel P (2008) The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie 54(3):174–184

    Article  CAS  PubMed  Google Scholar 

  10. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  11. Bartolomei F, Wendling F, Vignal JP et al (1999) Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol 110(10):1741–1754

    Article  CAS  PubMed  Google Scholar 

  12. Le Van Quyen M, Soss J, Navarro R et al (2005) Preictal state identification by sychronization changes in long-term intracranial EEG recordings. Clin Neurophysiol 116(3):559–568

    Article  PubMed  Google Scholar 

  13. Varotto G, Tassi L, Franceschetti S et al (2012) Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. Neuroimage 61(3):591–598

    Article  PubMed  Google Scholar 

  14. Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117

    Article  CAS  PubMed  Google Scholar 

  15. Boccaletti S, Latora V, Moreno Y et al (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308

    Article  Google Scholar 

  16. Luders HO, Najm I, Nair D et al (2006) The epileptogenic zone: general principles. Epileptic Disord 8(Suppl 2):S1–S9

    PubMed  Google Scholar 

  17. Centeno RS, Yacubian EM, Caboclo LO et al (2011) Intracranial depth electrodes implantation in the era of image-guided surgery. Arq Neuropsiquiatr 69(4):693–698

    Article  PubMed  Google Scholar 

  18. Cardinale F, Miserocchi A, Moscato A et al (2012) Talairach methodology in the multimodal imaging and robotics era. In: Scarabin J-M (ed) Stereotaxy and epilepsy surgery. John Libbey Eurotext, London, pp 245–272

    Google Scholar 

  19. Thakor NV, Tong S (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495

    Article  CAS  PubMed  Google Scholar 

  20. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1–2):1–37

    Article  PubMed  Google Scholar 

  21. Aarabi A, He B (2012) A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol 123(6):1111–1122

    Article  PubMed Central  PubMed  Google Scholar 

  22. Benar CG, Grova C, Kobayashi E et al (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30(4):1161–1170

    Article  PubMed  Google Scholar 

  23. Liu Y, Zhou W, Yuan Q et al (2012) Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 20(6):749–755

    Article  PubMed  Google Scholar 

  24. Allen PJ, Fish DR, Smith SJ (1992) Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 82(2):155–159

    Article  CAS  PubMed  Google Scholar 

  25. Fisher RS, Webber WR, Lesser RP et al (1992) High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 9(3):441–448

    Article  CAS  PubMed  Google Scholar 

  26. Wendling F, Bartolomei F, Bellanger JJ et al (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126:1449–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Worrell GA, Parish L, Cranstoun SD et al (2004) High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127:1496–1506

    Article  PubMed  Google Scholar 

  28. Jirsch JD, Urrestarazu E, LeVan P et al (2006) High-frequency oscillations during human focal seizures. Brain 129:1593–1608

    Article  CAS  PubMed  Google Scholar 

  29. Zijlmans M, Jacobs J, Kahn YU et al (2011) Ictal and interictal high frequency oscillations in patients with focal epilepsy. Clin Neurophysiol 122(4):664–671

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jacobs J, Staba R, Asano E et al (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 98(3):302–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brazdil M, Halamek J, Jurak P et al (2010) Interictal high-frequency oscillations indicate seizure onset zone in patients with focal cortical dysplasia. Epilepsy Res 90:28–32

    Article  PubMed  Google Scholar 

  32. Bartolomei F, Chauvel P, Wendling F (2008) Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 131:1818–1830

    Article  PubMed  Google Scholar 

  33. Aubert S, Wendling F, Regis J et al (2009) Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain 132:3072–3086

    Article  PubMed  Google Scholar 

  34. Bartolomei F, Gavaret M, Hewett R et al (2011) Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res 93:164–176

    Article  PubMed  Google Scholar 

  35. Friston KJ (2004) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  36. Jirsa VK, McIntosh AR (2007) Handbook of brain connectivity, vol 1. Springer, Berlin

    Book  Google Scholar 

  37. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  38. Sporns O, Chialvo DR, Kaiser M et al (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425

    Article  PubMed  Google Scholar 

  39. Lehnertz K (2011) Assessing directed interactions from neurophysiological signals—an overview. Physiol Meas 32(11):1715–1724

    Article  PubMed  Google Scholar 

  40. Lehnertz K, Bialonski S, Horstmann MT et al (2009) Synchronization phenomena in human epileptic brain networks. J Neurosci Methods 183(1):42–48

    Article  PubMed  Google Scholar 

  41. Ansari-Asl K, Senhadji L, Bellanger JJ et al (2006) Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys 74:031916

    Article  PubMed  Google Scholar 

  42. Osterhage H, Mormann F, Wagner T et al (2008) Detecting directional coupling in the human epileptic brain: limitations and potential pitfalls. Phys Rev E Stat Nonlin Soft Matter Phys 77:011914

    Article  PubMed  Google Scholar 

  43. Gourevitch B, Bouquin-Jeannes RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369

    Article  PubMed  Google Scholar 

  44. Wiener N (1956) Nonlinear prediction and dynamics. In: Proceedings of third Berkeley symposium, pp 247–252

    Google Scholar 

  45. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  46. Kaminski M, Liang H (2005) Causal influence: advances in neurosignal analysis. Crit Rev Biomed Eng 33(4):347

    Article  PubMed  Google Scholar 

  47. Franaszczuk PJ, Bergey GK, Kaminski MJ (1994) Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. Electroencephalogr Clin Neurophysiol 91(6):413–427

    Article  CAS  PubMed  Google Scholar 

  48. Wilke C, Worrell G, He B (2011) Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52(1):84–93

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wilke C, Van Drongelen W, Kohrman M et al (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51(4):564–572

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kaminski M, Blinowska K (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210

    Article  CAS  PubMed  Google Scholar 

  51. Baccalà LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474

    Article  PubMed  Google Scholar 

  52. Le Van Quyen M, Adam C, Baulac M et al (1998) Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res 792(1):24–40

    Article  PubMed  Google Scholar 

  53. Gotman J, Levtova V (1996) Amygdala-hippocampus relationships in temporal lobe seizures: a phase-coherence study. Epilepsy Res 25(1):51–57

    Article  CAS  PubMed  Google Scholar 

  54. Bartolomei F, Wendling F, Bellanger JJ et al (2001) Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol 112(9):1746–1760

    Article  CAS  PubMed  Google Scholar 

  55. Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105(16):6179–6184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Guye M, Regis J, Tamura M et al (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928

    Article  PubMed  Google Scholar 

  57. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927

    Article  CAS  PubMed  Google Scholar 

  58. Gersch W, Goddard GV (1970) Epileptic focus location: spectral analysis method. Science 169(3946):701–702

    Article  CAS  PubMed  Google Scholar 

  59. Takigawa M, Wang G, Kawasaki H et al (1996) EEG analysis of epilepsy by directed coherence method. A data processing approach. Int J Psychophysiol 21(2–3):65–73

    Article  CAS  PubMed  Google Scholar 

  60. Wilke C, Ding L, He B (2008) Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans Biomed Eng 55(11):2557–2564

    Article  PubMed Central  PubMed  Google Scholar 

  61. Astolfi L, Cincotti F, Mattia D et al (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55(3):902–913

    Article  CAS  PubMed  Google Scholar 

  62. van Mierlo P, Carrette E, Hallez H et al (2011) Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56(3):1122–1133

    Article  PubMed  Google Scholar 

  63. Jung YJ, Kang HC, Choi KO et al (2011) Localization of ictal onset zones in Lennox-Gastaut syndrome using directional connectivity analysis of intracranial electroencephalography. Seizure 20(6):449–457

    Article  PubMed  Google Scholar 

  64. Schindler K, Leung H, Elger CE et al (2007) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130:65–77

    Article  PubMed  Google Scholar 

  65. Schad A, Schindler K, Schelter B et al (2008) Application of a multivariate seizure detection and prediction method to non-invasive and intracranial long-term EEG recordings. Clin Neurophysiol 119(1):197–211

    Article  PubMed  Google Scholar 

  66. Pijn JP, Vijn PCM, Lopez da Silva FH (1989) The use of signal-analysis for the localization of an epileptogenic focus: a new approach. Adv Epileptol 17:272–276

    Google Scholar 

  67. Wendling F, Bartolomei F, Bellanger JJ et al (2001) Interpretation of interdependencies in epileptic signals using a macroscopic physical model of the EEG. Clin Neurophysiol 112(7):1201–1218

    Article  CAS  PubMed  Google Scholar 

  68. Wendling F, Bartolomei F, Senhadji L (2009) Spatial analysis of intracerebral electroencephalographic signals in the time and frequency domain: identification of epileptogenic networks in partial epilepsy. Philos Trans A Math Phys Eng Sci 367(1887):297–316

    Article  PubMed Central  PubMed  Google Scholar 

  69. Wendling F, Chauvel P, Biraben A et al (2010) From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci 4:154

    Article  PubMed Central  PubMed  Google Scholar 

  70. Wendling F, Ansari-Asl K, Bartolomei F et al (2009) From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J Neurosci Methods 183(1):9–18

    Article  PubMed  Google Scholar 

  71. Bettus G, Wendling F, Guye M et al (2008) Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 81(1):58–68

    Article  PubMed  Google Scholar 

  72. Palmini A (2010) Electrophysiology of the focal cortical dysplasias. Epilepsia 51(Suppl 1):23–26

    Article  PubMed  Google Scholar 

  73. Zoubir AM, Iskander DR (2004) Bootstrap techniques for signal processing. Cambridge University Press, UK

    Google Scholar 

  74. Schevon CA, Cappell J, Emerson R et al (2007) Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 35(1):140–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Ortega GJ, Menendez de la Prida L, Sola RG et al (2008) Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia 49(2):269–280

    Article  PubMed  Google Scholar 

  76. Liao W, Zhang Z, Pan Z et al (2010) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5(1):e8525

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Project Grant FP7-ICT-2009-6-270460 ACTIVE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruccio Panzica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Varotto, G., Tassi, L., Rotondi, F., Spreafico, R., Franceschetti, S., Panzica, F. (2013). Effective Brain Connectivity from Intracranial EEG Recordings: Identification of Epileptogenic Zone in Human Focal Epilepsies. In: Sakkalis, V. (eds) Modern Electroencephalographic Assessment Techniques. Neuromethods, vol 91. Humana Press, New York, NY. https://doi.org/10.1007/7657_2013_61

Download citation

  • DOI: https://doi.org/10.1007/7657_2013_61

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1297-1

  • Online ISBN: 978-1-4939-1298-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics