Skip to main content

Embryoid Bodies–Based Multilineage Differentiation of Human Embryonic Stem Cells Grown on Feeder-Free Conditions

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Abstract

Human embryonic stem cells (hESCs) can differentiate into any cell lineage (pluripotency potential) derived from the three germ layers: ectoderm, mesoderm, and endoderm. Pluripotency is usually demonstrated in vitro by spontaneous differentiation of hESCs grown on a monolayer of feeder-cells using an embryoid bodies (EBs)-based method. However, currently hESCs are grown mostly using fully defined media in the absence of a feeder layer. Here we describe a EBs-based protocol that allows multilineage differentiation of hESCs and human induced pluripotent stem cells (hiPSCs) grown on feeder-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  3. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4(8):a008128. https://doi.org/10.1101/cshperspect.a008128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yilmaz A, Benvenisty N (2019) Defining human pluripotency. Cell Stem Cell 25(1):9–22. https://doi.org/10.1016/j.stem.2019.06.010

    Article  CAS  PubMed  Google Scholar 

  5. Wobus AM, Loser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85(2):79–117. https://doi.org/10.1007/s00204-010-0641-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu G, David BT, Trawczynski M, Fessler RG (2020) Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 16(1):3–32. https://doi.org/10.1007/s12015-019-09935-x

    Article  PubMed  Google Scholar 

  7. Dakhore S, Nayer B, Hasegawa K (2018) Human pluripotent stem cell culture: current status, challenges, and advancement. Stem Cells Int 2018:7396905. https://doi.org/10.1155/2018/7396905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM, Robbins RC, Longaker MT, Wu JC (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A 106(37):15720–15725. https://doi.org/10.1073/pnas.0908450106

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smith KP, Luong MX, Stein GS (2009) Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 220(1):21–29. https://doi.org/10.1002/jcp.21681

    Article  CAS  PubMed  Google Scholar 

  10. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204. https://doi.org/10.1634/stemcells.19-3-193

    Article  CAS  PubMed  Google Scholar 

  11. Isaja L, Rodriguez-Varela MS, Marazita M, Mucci S, Itzcovich T, Chrem-Mendez P, Niikado M, Ferriol-Laffouillere SL, Allegri R, Martinetto H, Sevlever GE, Scassa ME, Surace EI, Romorini L (2021) Generation of a human induced pluripotent stem cell line from a familial Alzheimer’s disease PSEN1 T119I patient. Stem Cell Res 53:102325. https://doi.org/10.1016/j.scr.2021.102325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Romorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Isaja, L., Ferriol-Laffouillere, S.L., Mucci, S., Rodríguez-Varela, M.S., Romorini, L. (2021). Embryoid Bodies–Based Multilineage Differentiation of Human Embryonic Stem Cells Grown on Feeder-Free Conditions. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_440

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_440

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics