Skip to main content

Efficient Generation of Functional Hepatocytes from Human Induced Pluripotent Stem Cells for Disease Modeling and Disease Gene Discovery

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

Abstract

In vitro hepatocyte cell models are being used to study the pathogenesis of liver disease and in the discovery and preclinical stages of drug development. The culture of hepatic cell lines and primary hepatocytes as in vitro cell models has been carried out for several decades. However, hepatic cell lines (hepatic carcinoma generated or immortalized) have limited accuracy when recapitulating complex physiological functions of the liver. Additionally, primary hepatocytes sourced from human cadavers or medical biopsies are difficult to obtain due to sourcing limitations, particularly for large-scale population studies or in applications requiring large number of cells. Hepatocyte cultures differentiated from human embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) overcome in large part the limitations of traditional hepatocyte in vitro models. In this chapter, we described an efficient protocol routinely used in our laboratory to differentiate human iPSCs into functional hepatocyte cultures for in vitro modeling of liver function and disease. The protocol uses a three-stage differentiation strategy to generate functional hepatocytes from human iPSCs. The differentiated cells show characteristic hepatocyte morphology including flat and polygonal shape, distinct round nuclei, and presence of biliary canaliculi and they express hepatic markers alpha-fetoprotein (AFP), albumin (ALB), E-cadherin (CHD1), hepatocyte nuclear factor 4 alpha (HNF4α), and actin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collins SD, Yuen G, Tu T, Budzinska MA, Spring K, Bryant K, Shackel NA (2019) In vitro models of the liver: disease modeling, drug discovery and clinical applications. In: JEE T-P (ed) Hepatocellular carcinoma. Codon Publications, Brisbane (AU). https://doi.org/10.15586/hepatocellularcarcinoma.2019.ch3

    Chapter  Google Scholar 

  2. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134(1):82–106. https://doi.org/10.1016/j.pharmthera.2012.01.001

    Article  PubMed  CAS  Google Scholar 

  3. Zeilinger K, Freyer N, Damm G, Seehofer D, Knospel F (2016) Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 241(15):1684–1698. https://doi.org/10.1177/1535370216657448

    Article  CAS  Google Scholar 

  4. Underhill GH, Khetani SR (2018) Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol 5(3):426–439.e421. https://doi.org/10.1016/j.jcmgh.2017.11.012

    Article  PubMed  Google Scholar 

  5. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Bottger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gomez-Lechon MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Haussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhutter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stober R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. https://doi.org/10.1007/s00204-013-1078-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Donato MT, Lahoz A, Castell JV, Gomez-Lechon MJ (2008) Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab 9(1):1–11. https://doi.org/10.2174/138920008783331086

    Article  PubMed  CAS  Google Scholar 

  7. Antherieu S, Rogue A, Fromenty B, Guillouzo A, Robin MA (2011) Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in HepaRG cells. Hepatology 53(6):1895–1905. https://doi.org/10.1002/hep.24290

    Article  PubMed  CAS  Google Scholar 

  8. Sharanek A, Burban A, Burbank M, Le Guevel R, Li R, Guillouzo A, Guguen-Guillouzo C (2016) Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci Rep 6:24709. https://doi.org/10.1038/srep24709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8(3):443–450. https://doi.org/10.1074/mcp.M800258-MCP200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ramboer E, Vanhaecke T, Rogiers V, Vinken M (2015) Immortalized human hepatic cell lines for in vitro testing and research purposes. Methods Mol Biol 1250:53–76. https://doi.org/10.1007/978-1-4939-2074-7_4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lin C, Khetani SR (2016) Advances in engineered liver models for investigating drug-induced liver injury. Biomed Res Int 2016:1829148. https://doi.org/10.1155/2016/1829148

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumar S, Blangero J, Curran JE (2018) Induced pluripotent stem cells in disease modeling and gene identification. Methods Mol Biol 1706:17–38. https://doi.org/10.1007/978-1-4939-7471-9_2

    Article  PubMed  CAS  Google Scholar 

  13. Kumar S, Blackburn NB, Leandro AC, Leandro M, Peralta JM, Blangero J, Curran JE (2019) Human iPSC-derived hepatocytes reveal the functional consequences of an hispanic rare sequence variant in the DEGS1 gene. In: Abstracts of the University of Texas Rio Grande Valley, School of Medicine 3rd annual research symposium, McAllen Convention Center, 13–14 September, 2019

    Google Scholar 

  14. Nwosuocha D, DeLeon E, Leandro AC, Leandro M, Peralta JM, Blangero J, Curran JE, Kumar S (2019) Functional and transcriptomic profiles of iPSC generated mature hepatocytes. In: Abstracts of the University of Texas Rio Grande Valley, School of Medicine 3rd annual research symposium, McAllen Convention Center, 13–14 September, 2019

    Google Scholar 

  15. Ma X, Duan Y, Tschudy-Seney B, Roll G, Behbahan IS, Ahuja TP, Tolstikov V, Wang C, McGee J, Khoobyari S, Nolta JA, Willenbring H, Zern MA (2013) Highly efficient differentiation of functional hepatocytes from human induced pluripotent stem cells. Stem Cells Transl Med 2(6):409–419. https://doi.org/10.5966/sctm.2012-0160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Magner NL, Jung Y, Wu J, Nolta JA, Zern MA, Zhou P (2013) Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells 31(10):2095–2103. https://doi.org/10.1002/stem.1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kumar S, Curran JE, Espinosa EC, Glahn DC, Blangero J (2020) Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines. J Biol Methods 7(1):e124. https://doi.org/10.14440/jbm.2020.296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Curran JE, Glahn DC, Blangero J (2016) Utility of lymphoblastoid cell lines for induced pluripotent stem cell generation. Stem Cells Int 2016:2349261. https://doi.org/10.1155/2016/2349261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported in part by a grant from the Valley Baptist Legacy Foundation to UTRGV for Project THRIVE: Regenerative Medicine Center. Partial funding for the San Antonio Mexican American Family Study for the study of liver-related diseases was provided by NIH grant R01MD012564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, S., Curran, J.E., Williams-Blangero, S., Blangero, J. (2021). Efficient Generation of Functional Hepatocytes from Human Induced Pluripotent Stem Cells for Disease Modeling and Disease Gene Discovery. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_375

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_375

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics