Skip to main content

The Timing of Information Transfer in the Visual System

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

The mammalian visual cortex is composed of a constellation of cortical areas that are interconnected by a dense network of corticocortical connections. Among those connections, it is usual to distinguish between feedforward and feedback connections. Feedforward connections carry information away from area V1 toward the parietal and the temporal lobes, whereas feedback connections carry impulses in the reverse direction (Salin and Bullier, 1995). It is becoming increasingly apparent that, despite its complexity, the visual system processes information very rapidly. The delay imposed by neuronal processing in the correction of visually guided movements is of the order of 100 msec (Rossetti, 1997). Recent results also suggest that visual recognition of complex scenes is possible within 100–200 msec (Thorpe el al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abeles, M., 1982, Local Cortical Circuits, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Abeles, M., 1991, Corliconics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Barash, S., Bracewell, R. M., Fugassi, L., Gnadt, J. W., and Andersen, R. A., 1991, Saccade-related activity in the lateral intraparietal area. 1. Temporal properties; comparison with area 7a, J. Neurophysiol. 66: 1095–1108.

    PubMed  CAS  Google Scholar 

  • Bartlett, J. R., and Doty, R. W., 1974, Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli, J. Neurophysiol. 37: 621–641.

    PubMed  CAS  Google Scholar 

  • Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.

    PubMed  CAS  Google Scholar 

  • Best, J., Reuss, S., and Dinse, H. R. O., 1986, Lamina-specific differences of visual latencies following photic stimulation in the cat striate cortex, Brain Res. 385: 356–360.

    Article  PubMed  CAS  Google Scholar 

  • Bichot, N. P., Schall, J. D., and Thompson, K. G., 1996, Visual feature selectivity in frontal eye fields induced by experience in mature macaques, Nature 381: 697–699.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., and Vital-Durand, F., 1986, Organization and postnatal development of the monkey’s lateral geniculate nucleus, J. Physiol. 380: 453–491.

    CAS  Google Scholar 

  • Bolz, J., Rosner, G., and Wässle, H., 1982, Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina, ]. Physiol. 328: 171–190.

    CAS  Google Scholar 

  • Bullier, J., and Henry, G. H., 1979, Ordinal position of neurons in cat striate cortex, j. Neurophysiol. 42: 1251–1263.

    PubMed  CAS  Google Scholar 

  • Bullier, J., and Henry G. H., 1980, Ordinal position and afferent input of neurons in monkey striate cortex, J. Comp. Neurol. 193: 913–935.

    Article  PubMed  CAS  Google Scholar 

  • Bullier, J., and Nowak, L. G., 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5: 497–503.

    Article  PubMed  CAS  Google Scholar 

  • Bullier, J., McCourt, M. E., and Henry, G. H., 1988, Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat, Exp. Brain Res. 70: 90–98.

    PubMed  CAS  Google Scholar 

  • Bushnell, M. C., Goldberg, M. E., and Robinson, D. L., 1991, Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention, J. Neurophysiol. 46: 755–772.

    Google Scholar 

  • Casagrande, V. A., 1994, A third visual pathway to primate area VI, Trends Neurosci. 17: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, C., 1993, Response properties of neurons in area 17 projecting to the striate-recipient zone of the caTs lateralis posterior-pulvinar complex: Comparison with cortico-tectal cells, Exp. Brain Res. 96: 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Celebrini, S., Thorpe, S., Trotter, Y., and Imbert, M., 1993, Dynamics of orientation coding in area V1 of the awake primate, Visual Neurosci. 10: 811–825.

    Article  CAS  Google Scholar 

  • Cleland, B. G., and Enroth-Cugell, C., 1970, Quantitative aspects of gain and latency in the cat retina, J. Physiol. 206: 73–91.

    PubMed  CAS  Google Scholar 

  • Cleland, B. G., Dubin, M. W., and Levick, W. R., 1971, Simultaneous recording of input and output of lateral geniculate neurons, Nature (New Biol.) 231: 191–192.

    CAS  Google Scholar 

  • Cleland, B. G., Levick, W. R., Morstyn, H., and Wagner, H. G., 1976, Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex, J. Physiol. 255: 299–320.

    CAS  Google Scholar 

  • Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study, J. Comp. Neural. 269: 392–413.

    Article  CAS  Google Scholar 

  • Cope, T. C., Fetz, E. E., and Matsumara, M., 1987, Cross-correlation assessment of synaptic strength of single la fibre connections with triceps surae motoneurones in cats,.J. Physiol. 390: 161–188.

    CAS  Google Scholar 

  • Creutzfeldt, O., and Ito, M., 1968, Functional synaptic organization of primary visual cortex neurons in the cat, Exp. Brain Res. 6: 324–352.

    Article  PubMed  CAS  Google Scholar 

  • Desitnone, R., Fleming, J., and Gross, C. G., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.

    Article  Google Scholar 

  • Dinse, H. R., and Krüger, K., 1994, The timing of processing along the visual pathway in the cat, NeuroReport 5: 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. J., and Martin, K. A., 1991, A functional microcircuit for cat visual cortex, J. Physiol. (Lund.) 440: 735–769.

    CAS  Google Scholar 

  • Dreher, B., Fukada, Y., and Rodieck, R. W., 1976, Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates, J. Physiol. 258: 433–452.

    PubMed  CAS  Google Scholar 

  • Eder, C., Ficker, E., Günde, L. J., and Heinemann, U., 1991, Outward currents in rat entorhinal cortex stellate cells studied with conventional and perforated patch recordings, Eur. J. Neurosci. 3: 1271–1280.

    Article  PubMed  Google Scholar 

  • Eggermont, J. J., 1992, Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age,.J. Neurophysiol. 68: 1216–1228.

    CAS  Google Scholar 

  • Eschwiller, G. W., and Rauschecker, P., 1993, Temporal integration in visual cortex of cats with

    Google Scholar 

  • surgically induced strabismus, Eur. J. Neurosci. 5:1501–1509.

    Google Scholar 

  • Felleman, D. and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate

    Google Scholar 

  • cerebral cortex, Cerebral Cortex 1:1–47.

    Google Scholar 

  • Ferster, D., and Jagadeesh, B., 1992, EPSP—IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording, J. Neurosci. 12: 1262–1274.

    PubMed  CAS  Google Scholar 

  • Fetz, E. E., and Gustafsson, B., 1983, Relation between shapes of post-synaptic potentials and correlated changes in firing probability of cat motoneurones, J. Physiol. 341: 387–410.

    PubMed  CAS  Google Scholar 

  • Finlay, B. L., Schiller, P. H., and Voman, S. F., 1976, Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells, J. Neurophysiol. 39: 1352–1361.

    CAS  Google Scholar 

  • Fregnac, Y., and Bringuier, V., 1996, Spatio-temporal dynamics of synaptic integration in cat visual cortical receptive fields, in: Biological Basis and Computational Theory ofVision ( A. Aertsen and V. Braitenberg, eds.), Elsevier, Amsterdam, pp. 1–57.

    Google Scholar 

  • Freund, T. F., Martin, K. A., Somogyi, P., and Whitteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. II. Identification of postsynaptic targets by (;ABA immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 242: 275–291.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D., 1989, Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.

    Article  PubMed  CAS  Google Scholar 

  • Fries, W., 1984, Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase, J. Comp. Neurol. 230: 55–76.

    Article  PubMed  CAS  Google Scholar 

  • Funahashi, S., Bruce, C. J., and Godman-Rakic, P. S., 1990, Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms, J. Neurophysiol. 63: 814–831.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Kelly, J. P., 1976, The projections of cells in different layers of the caTs visual cortex, J. Comp. Neurol. 163: 81–106.

    Article  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1981, Morphology and intracortical projections of functionally characterised neurons in the cat visual cortex, Nature 280: 120–125.

    Article  Google Scholar 

  • Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.

    PubMed  CAS  Google Scholar 

  • Gochin, P. M., Miller, E. M., Gross, C. G., and Gerstein, G. L., 1991, Functional interactions among neurons inferior temporal cortex of the awake macaque, Exp. Brain Res. 84: 505–516.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. E., and Bushnell, M. C., 1991, Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields related to saccades, J Neurophysiol. 46: 773–787.

    Google Scholar 

  • Gouras, P., 1969, Antidromic responses of orthodromically identified ganglion cells in monkey retina, J. Physiol. 204: 407–419.

    PubMed  CAS  Google Scholar 

  • Gouras, P., and Link, K., 1966, Rod and cone interaction in dark-adapted monkey ganglion cells, J. Physiol. 184: 499–510.

    PubMed  CAS  Google Scholar 

  • Grieve, K. L., and Sillito, A. M., 1995, Differential properties of cells in the feline primary visual cortex providing corticofugal feedback to the lateral geniculate nucleus and visual claustrum, J. Neurosci. 15: 4868–4874.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E. E., Frostig, R. D., and Hidelsheim, R., 1994, Cortical point-spread function and long-range interactions revealed by real-time optical imagining of macaque primary visual cortex, J. Neurosci. 14: 2545–2568.

    CAS  Google Scholar 

  • Gustafsson, B., and McCrea, D., 1983, Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones, J. Physiol. 347: 431–451.

    Google Scholar 

  • Hartveit, E., and Heggelund, P., 1992, The effect of contrast on the visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus, Visual Neurosci. 9: 515–525.

    Article  CAS  Google Scholar 

  • Harvey, A. R., 1980, A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat, J. Physiol. 302: 507–524.

    PubMed  CAS  Google Scholar 

  • Haug, H., 1968, Quantitative elektronenmikroskopische Untersuchungen über den markfaseraufbau in der sehrinde der katze, Brain Res. 11: 65–84.

    Article  PubMed  CAS  Google Scholar 

  • Heller, J., Hertz, J. A., Kjaer, T. W., and Richmond, B. 1., 1995, Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2: 175–193.

    Google Scholar 

  • Hendry, S. H. C., and Yoshioka, T. Y., 1994, A neurochemically distinct third channel in the macaque dorsal lateal geniculate nucleus, Science 264: 575–577.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G. H., Salin, P. A., and Bullier, J., 1991, Projections from area 18 and 19 to cat striate cortex: Divergence and laminar specificity, Eur. J. Neurosci. 3: 186–200.

    Article  PubMed  Google Scholar 

  • Hoffmann, K. P., 1973, Conduction velocity pathways from retina to superior colliculus in the cat: A correlation with receptive field properties, J. Neurophysiol. 36: 409–424.

    PubMed  CAS  Google Scholar 

  • Hofman, M. A., 1985, Size and shape of the cerebral cortex in mammals. I. The cortical surface, Brain Behay. Evol. 27: 28–40.

    Article  CAS  Google Scholar 

  • Houzel, J.-C., Milleret, C., and Innocenti, G., 1994, Morphology of callosal axons interconnecting areas 17 and 18 of the cat, Eur. J. Neurosci. 6:898–9I7.

    Google Scholar 

  • Hughes, A., and Wässle, H., 1976, The cat optic nerve: Fibre total count and diameter spectrum, J. Comp. Neurol. 169: 171–184.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., and Saul, A. B., 1992, Action of brain stem reticular afferents on lagged and nonlagged cells in the cat lateral geniculate nucleus, J. Neurophysiol. 68: 673–691.

    PubMed  CAS  Google Scholar 

  • Hursh, J. B., 1939, Conduction velocity and diameter of nerve fibers, Aria.]. Physiol. 127: 131–139.

    Google Scholar 

  • Ikeda, H., and Wright, M. J., 1975, Retinotopic distribution, visual latency and orientation tuning of sustained and transient cortical neurons in area 17 of the caTs visual cortex, Exp. Brain Res. 22: 385–398.

    Google Scholar 

  • Innocenti, G. M., 1980, The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat, Arch. Ital. Biol. 118: 124–188.

    PubMed  CAS  Google Scholar 

  • Irvin, G. E., Norton, T., Sesma, M. A., and Casagrande, V. A., 1986, W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago cra.ssicaudatus), Brain Res. 362: 254–274.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y., Endo, K., and Araki, T., 1988, Excitatory synaptic actions between pairs of neighboring pyramidal tract cells in the motor cortex, I. Neurophysiol. 59: 636–647.

    CAS  Google Scholar 

  • Kawano, K., Shidara, M., Watanabe, Y., and Yamane, S., 1994, Neural activity in cortical area MST of alert monkey during occular following responses, J. Neurophysiol. 71: 2305–2324.

    PubMed  CAS  Google Scholar 

  • Kirk, D. L., Cleland, B. G., and Levick, W. R., 1975, Axonal conduction latencies of cat retinal ganglion cells, J. Neurophysiol. 38: 1395–1402.

    PubMed  CAS  Google Scholar 

  • Kirkwood, P. A., and Sears, T. A., 1978, The synaptic connections to intercostal motoneuroues as revealed by the average common excitation potential, J. Physiol. 275: 287–314.

    Google Scholar 

  • Knierim, J. J., and Van Essen, D. C. V., 1992, Neuronal responses to static texture patterns in area V 1 of the alert macaque monkey, J. Neurophysiol. 67: 961–980.

    CAS  Google Scholar 

  • Knox, C. K., 1974, Cross-correlation function for a neuronal model, Biophys. J. 14: 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Koike, H., Mano, N., Okada, Y., and Oshima, T., 1970, Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps, Exp. Brain Res. 11: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, Y., Nakajima, S., Toyama, K., and Fetz, E. E., 1988, Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex, Brain Res. 442: 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Konig, P., Engel, A. K., and Singer, W., 1996, Integrator or coincidence detector—The role of the cortical neuron revisited, Trends Neurosci. 19: 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, G., Vogels, R., and Orban, G. A., 1995, Cortical correlate of backward masking, Proc. Natl. Acad. Sci. USA 92: 5587–5591.

    Article  PubMed  CAS  Google Scholar 

  • Lachica, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.

    Article  PubMed  CAS  Google Scholar 

  • Lagae, L., Macs, H., Raiguel, S., Xiao, D.-K., and Orban, G. A., 1994, Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST, J. Neurophysiol. 71: 1597–1626.

    PubMed  CAS  Google Scholar 

  • LaMantia, A.-S., and Rakic, P., 1990, Cytological and quantitative characteristics of form cerebral commissures in the rhesus monkey, J. Comp. Neural. 291: 520–537.

    Article  CAS  Google Scholar 

  • Lamme, V. A. F., 1995, The neurophysiology of figure ground segregation in primary visual cortex, J. Neurosci. 15: 1605–1615.

    PubMed  CAS  Google Scholar 

  • Lee, B. B., Cleland, B. G., and Creutzfeldt, O. D., 1977, The retinal input to cells in area 17 of the caTs cortex, Exp. Brain Res. 30: 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Levick, W. R., 1973, Variation in the response latency of cat retinal ganglion cells, Vision Res. 13: 837–853.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J. B., Lund, J. S., and Yoshioka, T., 1996, Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey, Behay. Brain Res. 76: 5–19.

    Article  CAS  Google Scholar 

  • Livingstone, M. S., and Hubei, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.

    PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 46 of area 17 and the thick cytochrome oxydase stripes of area 18 in the squirrel monkey, J Neurosci. 7: 3371–3377.

    CAS  Google Scholar 

  • Lohmann, H., and Rrig, B., 1994, Long-range horizontal connections between supragranular pyramidal cells in the extrastriate visual cortex of the rat, J. Comp. Neurol. 344: 543–558.

    Article  PubMed  CAS  Google Scholar 

  • Ltiwel, S., and Singer, W., 1992, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science 255: 209–212.

    Article  Google Scholar 

  • Malpeli, J. G., Schiller, P. H., and Colby, C. L., 1981, Response properties of single cells in monkey striate cortex during reversible inactivation of individual geniculate laminae, J. Neurophysiol. 46: 1102–1119.

    PubMed  CAS  Google Scholar 

  • Marrocco, R. T., 1976, Sustained and transient cells in monkey lateral geniculate nucleus: Conduction velocities and response properties, J Neurophysiol. 39: 340–353.

    CAS  Google Scholar 

  • Martin, K. A. C., and Whitteridge, D., 1984, Form function and intracortical projections of spiny neurons in the striate visual cortex of the cat, J. Physiol. 356: 463–504.

    Google Scholar 

  • Mason, A., Nicoll, A., and Stratford, M., 1991, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro, J. Neurosci. 11: 72–84.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., 1987, Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties, J. Neurophysiol. 576: 381–413.

    Google Scholar 

  • Mastronarde, D. N., 1992, Nonlagged relay cells and interneurons in the cat lateral geniculate Nucleus—Receptive-field properties and retinal inputs, Visual Neurosci. 8: 407–441.

    Article  CAS  Google Scholar 

  • Matsumura, M., 1979, Intracellular synaptic potentials of primate motor cortex neurons during voluntary movement, Brain Res. 163: 33–48.

    Article  PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., 1987, Physiological evidence for two visual subsystems, in: Matters of intelligence ( L. M. Vaina, ed.), Reidel, Dordrecht, Holland, pp. 59–87.

    Chapter  Google Scholar 

  • Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 4: 1332–1334.

    Google Scholar 

  • McClurkiu, J. W., and Optican, L. M., 1996, Primate striate and prestriate cortical neurons during discrimination. I. Simultaneous temporal encoding of information about color and pattern, J NeuropJasiol. 75: 481–495.

    Google Scholar 

  • McCormick, D. A., and Van Krosigk, M., 1992, Corticothalamic activation modulates thalamic firing through glutamate °metabotropic“ receptors, Proc. Natl. Acad. Sci. USA 89: 2774–2778.

    Article  PubMed  CAS  Google Scholar 

  • McCourt, M. E., Thalluri, J., and Henry, G. H., 1990, Properties of area 17J18 border neurons contributing to the visual transcallosal pathway in the cat, Visual Neurosci. 5: 83–98.

    Article  CAS  Google Scholar 

  • Michalski, A., Gestin, G. L., Czarowska, J., and Tarneki, R., 1983, Interactions between cat striate cortex neurons, Exp. Brain Rec. 51: 97–107.

    CAS  Google Scholar 

  • Mitchison, G., 1992, Axonal trees and cortical architecture, Trends Neurosci. 15: 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Mitzdorf, U., and Singer, W., 1979, Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials, J. Comp. Neural. 187: 71–84.

    Article  CAS  Google Scholar 

  • Movshon, J. A., and Newsome, W. T., 1996, Visual response properties of striate cortical neurons projecting to area M’I’ in macaque monkeys, J. Neurosci. 16: 7733–7741.

    CAS  Google Scholar 

  • Mukerjee, P., and Kaplan, E., 1995, Dynamics of neurons in the cat lateral geniculate nucleus: In vivo electrophysiology and computational modeling, J Neurophysiol. 74: 1222–1243.

    Google Scholar 

  • Munk, M. H. J., Nowak, L. G., Girard, P., Chounlamountri, N., and Bullier, J., 1995, Visual latencies in cytochrome oxydase bands of macaque area V2, Proc. Nail. Acad. Sci. USA 92: 988–992.

    Article  CAS  Google Scholar 

  • Murre, J. M. J., and Sturdy, D. P. F., 1995, The connectivity of the brain: Multi-level quantitative analysis, Biol. Cybernet. 73: 529–545.

    Article  CAS  Google Scholar 

  • Naito, H., Miyakawa, F., and Ito, N., 1971, Diameters of callosal fibers interconnecting cat sensorimotor cortex, Brain Res. 27: 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1993, The modular organization of projections from areas V I and V2 to areas V4 and TEO in macaques, J. Neursci. 13: 3681–3691.

    CAS  Google Scholar 

  • Nealey, I. A., and Maunsell, J. H. R., 1994, Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex, J. Neurosci. 14: 2069–2079.

    PubMed  CAS  Google Scholar 

  • Nelson, J. I., Salin, P. A., Munk, M. H. J., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in corticocortical connections: A cross-correlation study in areas 17 and 18 in the cat, Visual Neurosci. 9: 21–38.

    Article  CAS  Google Scholar 

  • Nelson, M. E., and Bower, J. M., 1990, Brain maps and parallel computers, Trends Neurosci. 13: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, A., and Blakemore, C., 1993, Single-fibre EPSPs in layer 5 of rat visual cortex in vitro, NeuroReport 4: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L. G., and Bullier, J., 1997a, Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter: I. Evidence from chronaxie measurements, Exp. Brain Res., in press.

    Google Scholar 

  • Nowak, L. G., and Bullier, J., 1997b, Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter: II. Evidence from selective inactivation of cell bodies and axon initial segments, Exp. Brain Res., in press.

    Google Scholar 

  • Nowak, 1.. G., Munk, M. H. J., Chounlamountri, N., and Bullier, J., 1994, Temporal aspects of information processing in areas V1 and V2 of the macaque monkey, in: Oscillatory Event Related Brain Dynamics ( C. Pantev, T. Elbert, and B. Lutkenhiiner, eds.), Plenum Press, New York, pp. 85–98.

    Google Scholar 

  • Nowak, I.. G., Munk, M. H. J., Girard, P., and Bullier, J., 1995, Visual latencies in areas V I and V2 of the macaque monkey, Visual Neurosci. 12: 371–384.

    Article  CAS  Google Scholar 

  • Nowak, L. G., James, A. C., and Bullier, J., 1997, Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: Spatial and temporal organisation of functional synaptic responses, Exp. Brain Res. 117: 283–305.

    Article  Google Scholar 

  • Oram, M. W., and Perrett, D. I., 1992, Time course of neural responses discriminating different views of the face and head, J Neurophysiol. 68: 70–84.

    CAS  Google Scholar 

  • Orbach, H. S., and Van Essen, D. C., 1993, In vivo tracing of pathways and spatio-temporal activity patterns in rat visual cortex using voltage sensitive dyes, Exp. Brain Res. 94: 371–392.

    CAS  Google Scholar 

  • Orban, G. A., Hoffmann, K.-P., and Duyssens, J., 1985, Velocity selectivity in the cat visual system. 1. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18, J. Neurophysiol. 54: 1026–1049.

    CAS  Google Scholar 

  • Palmer, L. A., and Rosenquist, A. C., 1974, Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat, Brain Res. 67: 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Payne, B. R., 1993, Evidence for visual cortical area homologs in cat and macaque monkey, Cerebral Cortex 3: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Pei, X., Vidyasagar, T. R., Volgushev, M., and Creutzfeldt, O. D., 1994, Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex, J. Neurosci. 14: 7130–7140.

    PubMed  CAS  Google Scholar 

  • Perkel, D. H., Gerstein, G. L., and Moore, G. P., 1967, Neuronal spike trains and stochastic point processes. IL Simultaneous spike trains, Biophys. f. 7: 419–440.

    CAS  Google Scholar 

  • Perrett, D. L., Rolls, E. T., and Caan, W., 1982, Visual neurons responsive to faces in the monkey temporal cortex, Exp. Brain Res. 47: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., and Sethares, C., 1996, Myelinated axons and the pyramidal cell modules in monkey primary visual cortex, ]. Comp. Neurol. 365: 232–255.

    Article  CAS  Google Scholar 

  • Peters, A., Payne, B. R., and Budd, J., 1994, A numerical analysis of the geniculocortical input to striate cortex in the monkey, Cerebral Cortex 4: 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Raiguel, S. E., Lagae, L., Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Ranck, J. B., 1975, Which elements are excited in electrical stimulation of mammalian central nervous system: A review, Brain Res. 98: 417–440.

    Article  PubMed  Google Scholar 

  • Reese, B. E., and Guillery, R. W., 1987, Distribution of axons according to diameter in the monkey’s optic tract, f. Comp. Neurol. 260: 453–460.

    Article  CAS  Google Scholar 

  • Reese, B. E., and Ho, K.-Y., 1988, Axon diameter distributions across the monkey’s optic nerve, Neuroscience 27: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, A. D., and Fetz, E. E., 1993a, Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons, J. Neurophysiol. 69: 1661–1672.

    PubMed  CAS  Google Scholar 

  • Reyes, A. D., and Fetz, E. E., 1993b, Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons, J. Neurophysiol. 69: 1673–1683.

    PubMed  CAS  Google Scholar 

  • Richmond, B. L., and Optican, L. M., 1990, Temporal encoding of two dimensional patterns by single units in primate primary visual cortex. II. Information transmission, J. Neurophysiol. 64: 307–380.

    Google Scholar 

  • Rockland, K. S., 1989, Bistratified distribution of terminal arbors of individual axons projecting from area VI to middle temporal area (MT) in the macaque monkey, Visual Neurosci. 3: 155–170.

    Article  CAS  Google Scholar 

  • Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to Mt in the macaque, J. Comp. Neurol. 355: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., and Virga, A., 1989, ‘Terminal arbors of individual “feedback” axons projecting from area V2 to V I in the macaque monkey: A study using immunohistochemistry of anterogradely transported l’haseolus vulgaris-leucoagglutinin, J. Comp. Neurol. 285:54–72.

    Google Scholar 

  • Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area VI (area 17) to V2 (area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.

    Article  CAS  Google Scholar 

  • Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO, Visual Neurosci. 11: 579–600.

    Article  CAS  Google Scholar 

  • Rolls, E. T., and ‘lbvee, M. J., 1994, Processing speed in the cerebral-cortex and the neurophysiology of visual masking, Proc. R. Soc. Lond. B 257: 9–15.

    Article  CAS  Google Scholar 

  • Rossetti, Y., 1997, implicit perception in action: Short-lived motor representations of space, in: Advances in Consciousness Research (I’. G. Grosenbacher, ed.), Benjamins Publishers, Amsterdam.

    Google Scholar 

  • Rushton, W. A., 1951, A theory of the effects of fibre size in medullated nerve, J Physiol. 115: 101 - I22.

    CAS  Google Scholar 

  • Salin, P.-A., and Bullier, J., 1995, Corticocortical connections in the visual system: Structure and function, Physiol. Rev. 75: 107–154.

    PubMed  CAS  Google Scholar 

  • Sato, H., Katsuyama, N., ‘Tannura, H., Hata, Y., and ’Fsutnoto, T., 1994, Broad-tuned chromatic inputs to color-selective neurons in the monkey visual cortex, J. Neurophysiol. 72: 163–168.

    CAS  Google Scholar 

  • Saul, A. B., and Humphrey, A. I… 1990, Spatial and temporal response properties of lagged and non-lagged cells in cat lateral geniculate nucleus, J. Neurophysiol. 64: 206–224.

    PubMed  CAS  Google Scholar 

  • Schall, J. D., Morel, A., King, D. J., and Bullier, J., 1995, ‘Topography of visual-cortex connections with frontal eye field in macaque—Convergence and segregation of processing streams, J. Neurosci. 15: 4464–4487.

    Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., I977a, The effect of striate cortex cooling on area 18 cells in the monkey, Brain Res. 126: 366–369.

    Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977b, Properties and rectal projections of monkey retinal ganglion cells, J. Neurophysiol. 40: 428–445.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1978, Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey, J. Neurophysiol. 41: 788–797.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Barker, J. L., 1984, Rat hippocampal neurons in culture: Potassium conductances, J. Neurophysiol. 51: 1409–1433.

    PubMed  CAS  Google Scholar 

  • Sestokas, A. K., and Lehmkuhle, S., 1986, Visual latency of X- and Y-cells in the dorsal lateral geniculate nucleus of the cat, Vision Res. 26: 1041–1054.

    Article  PubMed  CAS  Google Scholar 

  • Shadlen, M. N., and Newsome, W. ‘T., 1994, Noise, neural codes and cortical organization, Curr. Opin. Neurobiol. 4: 569–579.

    Google Scholar 

  • Shipp, S., and Grant, S., 1991, Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex, Visual Neurosci. 6: 339–355.

    Article  CAS  Google Scholar 

  • Shipp, S., and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Sillito, A. M., Kemp, J. A., Milson, J. A., and Berardi, N., 1980, A re-evaluation of the mechanisms underlying simple cell orientation selectivity, Brain Res. 194: 517–520.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., ‘Fretter, F., and Cynader, M., 1975, Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections, J. Neurophysiol. 38: 1080–1098.

    CAS  Google Scholar 

  • Softky, W. R., 1995, Simple codes versus efficient codes, Curr. Opin. Neurobiol. 5: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., Chubb, M. C., and Crill, W. E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 53: 153–170.

    PubMed  CAS  Google Scholar 

  • Stanford, I.. R., 1987, Conduction velocity variations minimize conduction time differences among retinal ganglion cell axons, Science 238: 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., 1983, Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and its Impact on the Neurobiology of Vision, Plenum Press, New York.

    Book  Google Scholar 

  • Sutor, B., and Hablitz, J. J., 1989, EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-n-aspartate receptors in the generation of EPSPs, J. Neurophysiol. 61: 621–634.

    CAS  Google Scholar 

  • Swadlow, H. A., 1974, Systematic variations in the conduction velocity of slowly conducting axons in the rabbit corpus callosum, Exp. Neurol. 43: 445–45I.

    Article  PubMed  CAS  Google Scholar 

  • Swadlow, H. A., 1992, Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses, ]. Neurophysiol. 68: 605–619.

    CAS  Google Scholar 

  • Swadlow, H. A., 1994, Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: Axonal properties, sensory receptive fields, and subthreshold synaptic inputs, J Neurophysiol. 71: 437–453.

    CAS  Google Scholar 

  • Swadlow, H. A., and Weyand, T. G., 1981, Efferent systems of the rabbit visual cortex; Laminar distribution of the cells of origin, axonal conduction velocities and identification of axonal branches, J. Comp. Neurol. 203: 799–822.

    Article  PubMed  CAS  Google Scholar 

  • Swadlow, H. A., Rosene, D. L., and Waxman, S. G., 1978, Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey, Exp. Brain Res. 33: 455–467.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., 1983, Cross-correlation analysis of geniculostriate neuronal relationships in cats, J. Neurophysiol. 49: 1303–1318.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Weber, H., and Creutzfeldt, O. D., 1986, Visual properties and spatial distribution of neurons in the visual association area of the prelunate gyrus of the awake monkey, Exp. Brain Res. 65: 11–37.

    Article  PubMed  CAS  Google Scholar 

  • Thalluri, J., and Henry, G. H., 1989, Neurons of the striate cortex driven trans-synaptically by electrical stimulation of the superior colliculus, Vision Res. 10: 1319–1323.

    Article  Google Scholar 

  • Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D., 1996, Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search, JNeurophysiol., in press.

    Google Scholar 

  • Thomson, A. M., and West, D. C., 1993, Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex, Neuroscience 54: 329–346.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., Girdlestone, D., and West, D. C., 1988, Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices, J. Neurophysiol. 60: 1896–1907.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M., Deuchars, J., and West, D. C., 1993, Single axon excitatory postynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation, Neuroscience 54: 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, S. J., and Imbert, M., 1989, Biological constraints on connectionist models, in: Connectionism in Perspective (R. Pfeiffer, Z. Schreter, F. Fogelamn-Soulié, and 1.. Steels, eds.), Elsevier, Amsterdam, pp. 63–92.

    Google Scholar 

  • Thorpe, S. J., Rolls, E. T., and Maddison, S., 1983, The orbitofrontal cortex: Neuronal activity in the behaving monkey, Exp. Brain Res. 49: 93–115.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, S., Fize, D., and Marlot, C., 1996, Speed of processing in the human visual system, Nature 381: 520–522.

    Google Scholar 

  • Tovee, M. J., Rolls, E. T., Treves, A., and Bellis, R. P., 1993, Information encoding and the responses of single neurons in the primate temporal visual cortex, J. Neurophysiol. 70: 640–654.

    PubMed  CAS  Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T., and “lòkashiki, S., 1974, An intracellular study of neuronal organisation in the visual cortex, Exp. Brain Res. 21: 45–66.

    Google Scholar 

  • Toyama, K., Kimura, M., and Tanaka, K., 1981, Cross-correlation analysis of interneuronal connectivity in cat visual cortex, J. Neurophysiol. 2: 191–201.

    Google Scholar 

  • Tsumoto, T., Creutzfeldt, O. D., and Legendy, C. R., 1978, Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat, Exp. Brain Res. 32: 345–364.

    Article  PubMed  CAS  Google Scholar 

  • Ullman, S., 1995, Sequence seeking and counter streams—A computational model for bidirectional information-flow in the visual-cortex, Cerebral Cortex 5: 1–1 1.

    Google Scholar 

  • Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.

    PubMed  CAS  Google Scholar 

  • Vogels, R., and Orban, G. A., 1994, Activity of inferior temporal neurons during orientation discrimination with succesively presented gratings, f. Neurophysiol. 71: 1428–1451.

    CAS  Google Scholar 

  • Volgushev, M., Vidyasagar, T. R., and Pei, X., 1995, Dynamics of orientation tuning of postsynaptic potentials in the cat visual cortex, Visual Neurosci. 12: 621–628.

    Article  CAS  Google Scholar 

  • Wässle, H., Levick, W. R., Kirk, D. L., and Cleland, B. G., 1975, Axonal conduction velocity and perikaryal size, Exp. Neural. 49: 246–251.

    Article  Google Scholar 

  • Waxman, S. G., and Bennett, M. V. L., 1972, Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system, Nature 238: 217–219.

    CAS  Google Scholar 

  • Waxman, S. G., and Swadlow, H. A., 1976, Ultrastructure of visual callosal axons in the rabbit, Exp. Neurol. 536: 115–127.

    Article  Google Scholar 

  • Weiss, G., 1991, Sur la possibilité de rendre comparables entre eux les appareils servant à l’excitation électrique, Arch. lial. Biol. 35: 431–446.

    Google Scholar 

  • Welker, E., Armstrong_James, M., Van der Loos, H., and Kraftsik, R., 1993, The mode of activation of a barrel column: Response properties of single units in somatosensory cortex of the mouse upon whisker deflection, Eur. J. Neurosci. 5: 691–712.

    CAS  Google Scholar 

  • Wiesel, I. N., and Hubel, I. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J. Neurophysiol. 29: 1115–1156.

    PubMed  CAS  Google Scholar 

  • Wilson, P. D., Rowe, M. H., and Stone, J., 1976, Properties of relay cells in the caTs lateral geniculate nucleus: A comparison of W-cells with X- and Y-cells, f. Neurophysiol. 39: 1193–1209.

    CAS  Google Scholar 

  • Yoshioka, I., and Dow, B. M., 1996, Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex, Below. Brain Res. 76: 71–88.

    Article  CAS  Google Scholar 

  • Yoshioka, I., Levitt, J. B., and Lund, J. S., 1994, Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections, Visual Neurosci. 11: 467–489.

    Article  CAS  Google Scholar 

  • Young, M. P., 1992, Objective analysis of the topological organization of the primate cortical visual system, Nature 358: 152–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowak, L.G., Bullier, J. (1997). The Timing of Information Transfer in the Visual System. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics